

NAU Pottery Ramada Final Report

Prepared By:

Luis Corral Kayla Cross Madison Kaltschnee Samantha Ray

November 23rd, 2020

Table of Contents

Acknowledgements
1.0 Project Introduction
1.1 Project Location
1.2 Project Constraints and Limitations
1.3 Project Objectives
1.4 Project Deliverables
2.0 Site Investigation
2.1 Survey Work
2.2 Geotechnical Sampling
3.0 Hydraulic Drainage Analysis
3.1 Flow Analysis
3.2 Berm Design
4.0 Geotechnical Analysis
4.1 Atterberg Limits
4.2 Liquid Limit
4.3 Plasticity Index
4.4 Sieve Analysis
4.5 Direct Shear
5.0 Structural Analysis
5.1 Ramada Geometry
5.2 Design Analysis
5.2.1 Design Loads
5.2.2 Decking
5.2.3 Joist Design
5.2.3.1 Calculations
5.2.3.2 Results
5.2.4 Beam Design
5.2.4.1 Calculations
5.2.4.2 Results
5.2.5 Column Design 24

5.2.5.1 Calculations	
5.2.5.2 Results	
5.2.6 Foundation Design	
5.2.6.1 Calculations	
5.2.6.2 Results	
5.2.7 Connection Design	
5.2.7.1 Calculations	
5.2.7.2 Results	
5.2.8 Lateral Analysis	
6.0 Material Specifications	
7.0 Costs of Design Implementation	
8.0 Impacts Analysis	
8.1 Social	
8.2 Environmental	
8.3 Economical	
9.0 Summary of Design Work	
10.0 Summary of Staffing and Engineering Costs	39
11.0 Conclusion	44
12.0 References	45
Appendices	
Appendix A – Geotech Testing	47
Appendix B – Design Load Calculations and Results	50
Appendix C – Plywood Design	57
Appendix D – Joists	59
Appendix E – Beams	71
Appendix F – Columns	
Appendix G – Connections	
Appendix H – Foundation Design	
Appendix I - Schedules	93

Table of Equations

Equation 5. 1: Actual bending stress	18
Equation 5. 2: Allowable bending stress	18
Equation 5. 3: Percentage of stress due to bending	19
Equation 5. 4: Actual shear stress	19
Equation 5. 5: Allowable shear stress	20
Equation 5. 6: Actual bending stress	20
Equation 5. 7: Deflection	21
Equation 5. 8: Allowable beam deflection	21
Equation 5. 9: Actual compression stress parallel to grain	24
Equation 5. 10: Allowable compression stress	25
Equation 5. 11: Column stability factor	25
Equation 5. 12: Percentage of stress due to compression	26
Equation 5. 13: Deflection due to axial load	26
Equation 5. 14: Actual compression stress parallel to grain	26
Equation 5. 15: Ultimate bearing capacity	27
Equation 5. 16: Effective stress	28
Equation 5. 17: Allowable bearing pressure	28
Equation 5. 18: Maximum allowable soil load	29
Equation 5. 19: Minimum required area of reinforcement	29
Equation 5. 20: Minimum width of foundation	29

Table of Figures

Figure 1-1: Vicinity Map Detailing NAU's South Campus in Relation to the Ceramics Comple	ex
	2
Figure 1-2: Project Location Shown in Yellow Over the Existing Kiln	3
Figure 2-1: Topographic Map of the Project Site and Surrounding Area	5
Figure 3-1: Existing Topographic Map with Existing Flow Paths	6
Figure 3-2: Proposed Topographic Map with Water Flow Path and Berm	7
Figure 4-1: Hole 1 Particle Size Distribution	9
Figure 4- 2: Hole 2 Particle Size Distribution	10
Figure 5- 1: Roof Alternatives	12
Figure 5- 2: Civil 3D South View of Ramada Geometry	14
Figure 5- 3: Civil 3D East View of Ramada Geometry	15
Figure 5- 4: Chimney Framing	23
Figure 5- 5: Typical HU Joist Hanger [14]	32
Figure 5- 6: Typical HT and LCE4 [14]	32
Figure 5- 7: MPB88Z [14]	33

Table of Charts

Table 4- 1: Hole 1 Particle Size Distribution Results	9
Table 4- 2: Hole 2 Particle Size Distribution Results	. 10
Table 4- 3: Averaged Cc and Cu	. 11
Table 4- 4: Speedie and Associates Lateral Pressures	. 12
	10
Table 5- 1: Decision Matrix for Roof Geometry	. 13
Table 5- 2: Design Loads	. 17
Table 5- 3: Typical Joist Results	. 22
Table 5- 4: Typical Chimney Results	. 22
Table 5- 5: Beam Results	. 24
Table 5- 6: Column Results	. 27
Table 5- 7: Foundation Results	. 30
Table 5- 8: Connection Results	. 31
Table 5- 9: Lateral Plywood Results	. 34
Table 7- 1: Approximate Material Estimate	. 35
Table 10- 1: Proposed Staffing Breakdown	. 39
Table 10- 2: Actual Staffing Breakdown	. 41
Table 10- 3: Proposed Hours Broken Down per Role	. 42
Table 10- 4: Actual hours broken down per role	. 43

Appendix A – Geotech Testing	47
A-1 Atterberg Limits Data	47
A-2 Sieve Analysis Data	
Appendix B – Design Load Calculations and Results	
B-1 Dead and Live Load Calculations	
B-2 Dead and Live Load Results	
B-3 Snow Load Calculations	51
B-4 Snow Load Results	
B-5 Wind Load (C&C) Calculations	53
B-6 Wind Load (C&C) Results	54
B-7 MWFRS Wind Load Calculations	
B-8 MWFRS Wind Load Results	56
Appendix C – Plywood Design	57
C-1 Plywood Calcualtions	57
C-2 Plywood Results	
Appendix D – Joists	
D-1 Joists Bending Check Calculations	59
D-2 Joists Bending Check Results	60
D-3 Joists Shear Check Calculations	61
D-4 Joists Shear Check Results	62
D-5 Joists Deflection Check Calculations	63
D-6 Joists Deflection Check Results	64
D-7 2x12 Joist Calculations	65
D-8 2x12 Joist Results	66
D-9 Short Joist Check Calculations	67
D-10 Short Joist Check Results	68
D-11 Short Joist #2 Check Calculations	69
D-12 Short Josit #2 Check Results	70
Appendix E – Beams	71
E-1 Beam Design Calculations	71
E-2 Beam Design Results	72

Table of Appendices

Appendix F – Columns	73
F-1 End Column Design Calculations	73
F-2 End Column Design Results	74
F-3 Middle Column Design Calculations	75
F-4 Middle Column Design Results	76
F-5 End Column ASCE Check Calculations	77
F-6 End Column ASCE Check Results	78
F-7 Middle Column ASCE Check Calculations	79
F-8 Middle Column ASCE Check Results	80
Appendix G – Connections	81
G-1 Joist to Beam Connection Calculations	81
G-2 Joist to Beam Connection Results	82
G-3 Beam to Column Connection Calculations	83
G-4 Beam to Column Connection Results	84
G-5 Column to Footing Connection Calculations	85
G-6 Column to Footing Connection Results	86
Appendix H – Foundation Design	87
H-1 Bearing Design for Foundations Calculations	87
H-2 Bearing Design for Foundations Results	88
H-3 Sliding Check Calculations	89
H-4 Sliding Check Results	90
H-5 Uplift Check Calculations	91
H-6 Uplift Check Results	92
Appendix I – Schedules	93
I-1 Original Schedule	93
I-2 Final Schedule	94

Acknowledgements

The NAU Pottery Ramada Team would like to acknowledge all of the individuals who offered their guidance and support throughout the duration of this project. We would like to personally thank our grading instructor, Jeffrey Heiderscheidt, for his countless hours reviewing our work and providing constructive feedback; Dr. Alarick Reibolt, for his geotechnical knowledge and guidance; Adam Bringhurst, for his guidance in using the civil lab; our technical advisor, Sabrina Ballard, for her structural knowledge and advice throughout the design process; and to our client, Jason Hess, for trusting us to design a ramada that will meet all of the needs of the ceramics department.

1.0 Project Introduction

The purpose of this project is to analyze and design a ramada to cover an existing kiln for Northern Arizona University's ceramics department. The existing kiln is one of the only kilns on-site without roof coverage and therefore is exposed to rain, snow, and sun year-round which can cause weathering and erosion to occur to the structure as well as becomes an inconvenience to those using the kiln to fire their ceramic art pieces. This report details the design for a ramada that will prevent the structure and users from being directly exposed to inclement weather.

1.1 Project Location

The project site is located on Northern Arizona University's south campus, specifically adjacent to the ceramics department building. The address is 1919 S Lone Tree Rd, Flagstaff, AZ 86001. Figure 1-1 shows a vicinity map of NAU's south campus and the surrounding infrastructure near the Ceramics complex. Figure 1-2 shows an aerial view of the kiln in which the ramada will cover.

Figure 1-1: Vicinity Map Detailing NAU's South Campus in Relation to the Ceramics Complex

Figure 1-2: Project Location Shown in Yellow Over the Existing Kiln

1.2 Project Constraints and Limitations

The constraints for the project are as follows: 1) limited space, 2) ability to obtain permits, 3) budget, 4) resources, and 5) keeping a similar aesthetic of existing ramadas. The limitations for the project are as follows: 1) designing drainage structures, 3) analysis of the watershed, 4) limited geotechnical testing due to the inoperable direct shear machine, and 5) COVID-19's limited access to campus facilities.

1.3 Project Objectives

The objective of this project is to design a ramada that allows students to have overhead protection from inclement weather when they are using the kiln to fire their ceramic projects. With no protection over the kiln, the wood that is stockpiled for fuel can become wet. Before the wood is used for fuel it must be dried. The new ramada will be large enough to keep the wood dry when storing it next to the kiln, keep the kiln and students dry, as well as direct water runoff away from the kiln and its surrounding areas.

1.4 Project Deliverables

The project deliverable unique to this project includes a plan set for construction.

2.0 Site Investigation

Numerous site visits were conducted to understand the layout of the site and the needs of the client. Upon inspection at the site visit, it was determined the area in which the kiln is located is densely populated by other kilns/structures that the ceramic department uses frequently. These structures and obstructions in the surrounding area were documented during two survey sessions. Soil samples were also collected on the site to perform geotechnical analysis.

2.1 Survey Work

In order to completely capture the topographic map of the site, the team completed two surveying sessions on-site. Approximately 120 data points were collected in total. These data points were then used to create a topographic and site map. A total station, data collector, and prism rod were used to take each of the shots. Figure 2-1 shows the topographic map of the area, existing structures, and soil sampling locations. It is apparent in Figure 2-1 that the site is on a slope, having a higher elevation on the west-side and decreasing elevation as one travels to the east-side. It is important to fully capture the topography of the site for the hydraulic runoff analysis of the site and ramada design. The client specified that there must be access in which a wheelbarrow can pass through on all sides of the kiln. This will be taken into consideration when designing the geometry of the ramada.

Figure 2-1: Topographic Map of the Project Site and Surrounding Area

2.2 Geotechnical Sampling

Soil samples were taken from the Ceramics Complex at Northern Arizona University (1919 S Lone Tree Rd, Flagstaff, AZ 86011). Two samples in total were taken near the uncovered kiln. One sample was located to the south of the kiln, and the other sample was located to the north of the kiln at the edge of the ceramics complex. This was done to ensure there was no engineered fill from the kiln construction collected in the samples. Refer to Figure 2-1 above to see the location of samples. The team collected soil samples using a hand auger, a shovel, and an electric hammer drill. The volume of soil taken from each hole was approximately 5 quarts. The samples were placed in two sterile 6 Quart clear plastic stacking storage container totes. The samples were used for testing in our geotechnical analysis to determine the soil classification. Two soil samples were collected North and South of the proposed structure at a depth of approximately 2.5 ft, shown in Figure 2-1. When attempting to collect soil samples at the site, we found that it was difficult to dig deeper than 2.5 feet due to the large amount of rock found just below the surface. The team believes the rock found was limestone. Further details of the

geotechnical analysis of the site investigation will be discussed in a later section of this report.

3.0 Hydraulic Drainage Analysis

The team completed a minor hydraulic analysis of the site to determine the water runoff path.

3.1 Flow Analysis

Currently, rainfall is discharged from the adjacent west parking lot above the ceramic complex. The path of runoff flowing perpendicular to the contour lines, trends directly towards the west side of the proposed structure's location as shown in Figure 3-1. To prevent water runoff from running through the project site, the team proposes constructing a berm just west of the kiln's foundation that will divert the water flow further south and more importantly away from the kiln.

Figure 3-1: Existing Topographic Map with Existing Flow Paths

3.2 Berm Design

The proposed berm will be 2 feet tall on the west side and gradually sloped towards the east side. It will be 30 feet long by 3 feet wide and its eastern most edge will be located

approximately 15' from the west edge of the existing kiln foundation. This is shown in Figure 3-2.

Figure 3-2: Proposed Topographic Map with Water Flow Path and Berm

The typical height of berms range from 18 to 24 inches [13]. The length of the berm was based on the length of the kiln foundation. The berm needed to be longer than the kiln foundation to ensure water did not come in contact with the kiln foundation. The berm will have a slope of approximately 45 degrees. The berm was determined to be 2 feet tall by 3 feet wide based on the relatively small area draining to the existing kiln. Without doing a drainage analysis of the watershed, the team decided that the berm did not need to be excessively large to reroute the water. The berm will require approximately 3 cubic yards of soil (for the top soil, clay, and class II backfill). Approximately 7 cubic yards of soil will be taken and used from the excavated holes for the ramada footings.

4.0 Geotechnical Analysis

Following the collection of soils during the site investigation, the team processed, analyzed, and classified the soil in the lab using the following tests to classify the soil: *Atterberg Limits (ASTM D4318)*, and *Particle Size Distribution Using the Sedimentations (ASTM D7928-17)*. It was planned to also complete the *Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions (ASTM D3080/D3080M-11)*, but due to laboratory time constraints and required maintenance on the machine, the team was unable to complete the direct shear testing. Instead, the geotechnical report produced during the construction of the nearby ceramics building was used to fill in missing data the team could not produce. The geotechnical testing was done by Speedie and Associates, dated August 9th, 2012.

4.1 Atterberg Limits

The Atterberg Limits testing produced a Plastic Limit value and Liquid Limit value, which allowed the team to determine a plasticity index, which was used in the USCS soil

classification. The results from sample hole 1 and 2 were averaged to get a plastic limit of 32.93, and a liquid limit of 24.19. This data can be seen in Appendix A, Table 3-1. The plastic limit of soil is defined as the water content at which the soil begins to crumble when rolled into a ¹/₈ inch thread. The plastic limit is used to classify the fine-grained soil, indicating the toughness index of a soil, give an idea of the consultancy of the soil, predict the consolidation properties of soil while computing the settlement and bearing capacity of the soil, and used in determining the plasticity index of soil. The Atterberg Limits allowed the team to classify the soil using AASHTO. The soil classification was A-1-b-Stone fragments; gravel and sand.

4.2 Liquid Limit

The liquid limit (LL) is defined as the minimum water content at which a part of soil cut by a groove of standard dimension will flow together for a distance of 12 mm (1/2 inch) under an impact of 25 blows in the device. LL of soil is a very important property of fine grained soil (or cohesive soil), the value of liquid limit is used to classify fine grained soil, it gives us information regarding the state of consistency of soil on site, the LL of soil can be used to predict the consolidation properties of soil while calculating allowable bearing capacity and settlement of foundation, and the LL value of soil is also used to calculate the activity of clays and toughness index of soil [11].

4.3 Plasticity Index

The plasticity index (PI) is a measure of the plasticity of a soil. The plasticity index is the size of the range of water contents where the soil exhibits plastic properties. Soils with a high PI tend to be clay, those with a lower PI tend to be silt, and those with a PI of 0 (non-plastic) tend to have little or no silt or clay. The PI ranges can be seen below [10].

(0) – Non-plastic
(<7) – Slightly plastic
(7-17) – Medium plastic
(>17) – Highly plastic

4.4 Sieve Analysis

The team also conducted a sieve analysis to determine the particle size distribution of the soil and USCS classification of the soil. Hole 1 produced results found below.

Hole 1 Particle Distribution		
% Sand	79.21	
% Gravel	11.29	
% Fines	9.49	
Coefficients		
D10	0.15	
D30	0.25	
D60	0.60	
Cc	0.69	
Cu	4.00	

Table 4-1: Hole 1 Particle Size Distribution Results

The following figure is a visual representation of how the soil passed through the sieves.

Figure 4-1: Hole 1 Particle Size Distribution

Hole 2 Particle Distribution		
% Sand	78.43	
% Gravel	17.69	
% Fines	3.87	
Coefficients		
D ₁₀	0.15	
D ₃₀	0.45	
D ₆₀	1.55	
Cc	0.87	
Cu	10.33	

The test results from hole 2 can be seen below in, Table 4-2, and Figure 4-2. *Table 4- 2: Hole 2 Particle Size Distribution Results*

The following figure is a visual representation of how the soil passed through the sieves.

Figure 4-2: Hole 2 Particle Size Distribution

The results from hole 1 and 2 were averaged to calculate an average Coefficient of Curvature, Coefficient of Uniformity, D10, D30, and D60. The coefficient of curvature

(Cc) is the parameter estimated using the gradation curve through sieve analysis. This parameter is used to classify the soil as well graded or poorly graded and is given by the relation as below.

The coefficient of uniformity (Cu) is defined as the ratio of D60 to D10. A value of Cu greater than 4-6 classifies the soil as well graded. When Cu is less than 4 it is classified as poorly graded or uniformly graded soil. D60 is the size of the sieve hole in which 60% of soil will pass through it. D30 is the size of the sieve hole in which 30% of soil will pass through it. D10 is the size of the sieve hole in which 10% of soil will pass through it. The averaged Cc, and Cu can be seen in Table 4-3.

Table -	4-3:	Averaged	Сс	and	Си
1 0010		riveragea	$\mathcal{C}\mathcal{C}$	curver	$\mathcal{O}\mathcal{U}$

Average Cc	0.783
Average Cu	7.17

These results were used to determine the USCS soil classification. The soil was classified as SP-SM poorly graded sand with silt from 0" - 2.5'. Limestone bedrock was reached at 2-2.5'.

4.5 Direct Shear

The Project Manual for the nearby Ceramics building was provided by Gregory Mace, Associate Director of Engineering and Inspection Services at NAU. The project manual was stamped by Johnson Waltzer Associates, LLC. The project manual includes a complete geotechnical report conducted by a local geotechnical firm called Speedie and Associates. A summary of the data pertaining to the needs of this project are as follows: 1) the native upper soils typically consist of silty clayey gravel with subordinate amounts of sand, 2) underlying these upper soils at depths ranging from 2 to 2.25 feet is limestone bedrock, 3) liquid limits on the order of 32 to 42 percent with plasticity indices from 4 to 10 percent, 4) a recommended safe allowable bearing capacity of 6,000 psf can be utilized for design, and 5) lateral pressures seen below in Table 4-4 [7].

Active pressure (unrestrained walls)	35 pcf
Active pressure (restrained walls)	60 pcf
Passive pressure (continuous footings)	300 pcf
Passive pressure (spread footings or drilled piers)	350 pcf
COF (with passive pressure)	0.35
COF (without passive pressure)	0.45

Table 4-4: Speedie and Associates Lateral Pressures

5.0 Structural Analysis

5.1 Ramada Geometry

The basic geometry of the ramada was determined based on the surrounding structures, materials, and aesthetics within the ceramics complex. After taking measurements of the existing foundation, kiln, and walkways, the team designed the width and length of the ramada so that there is enough space to easily transport ceramic materials between walkways and gave enough distance between our proposed columns and existing structures. There were two design options for the roof of the ramada: a pitched roof or a monosloped roof, seen below in Figure 5-1.

Figure 5-1: Roof Alternatives

A decision matrix was created to weigh out the pros and cons of each structure design. The decision matrix can be seen in Table 5-1. The criteria chosen were: ability to shed water, design difficulty, construction difficulty, construction feasibility, client preference, cost of materials, and allowable design height to fit the kiln's chimney. The criteria were weighted subjectively to what the team thought would best fit the area. The client preferred the monoslope roof but wasn't opposed to the other design option since existing nearby ramadas have sloped roofs. Construction feasibility was a criteria the team kept in mind due to the possibility of construction management students building this ramada in the future. The "allowable design height to fit chimney" criteria was a design criteria because of the hazards it could pose if the chimney was covered. Based on the decision matrix results, it was determined that the favorable design would be the monoslope roof. Both the pitched and monoslope roof would have to be paired with an additional water routing system to account for the new discharge amount. The monoslope was favorable because of cost of materials and constructability. The monoslope roof design would only require a simply supported beam, ridge beam, with joists. The pitched roof would have required a ridge beam and end posts.

		<u>Monoslope</u>		<u>Pitched</u>	
<u>Criteria</u>	<u>Weig</u> <u>ht</u>	<u>Score*</u>	<u>Weighted</u> <u>Score</u>	<u>Score*</u>	<u>Weighted</u> <u>Score</u>
Shed Water Away from Other Kilns	0.2	9	1.8	5	1
Design Difficulty	0.1	6	0.6	6	0.6
Construction Feasibility	0.3	7	2.1	4	1.2
Client Preference	0.1	9	0.9	6	0.6
Cost of Materials	0.25	10	2.5	7	1.75
Aesthetics	0.05	5	0.25	10	0.5
Allowable Design Height to Fit Chimney	0.1	7.5	0.75	4	0.4
Total	1	N/A	<mark>8.9</mark>	N/A	6.05

Tahle	5-1	• Decision	Matrix	for Roo	f Geometry
rubie	<i>J</i> - 1	. Decision	mann	<i>jui</i> 1.00	j Geomen y

*Based on a scale of 1-10 (1 being the lowest score, 10 being the highest score

It was determined that the ramada would be rectangular in shape with a width of 18 feet, a length of 24 feet, and a roof slope of 1:18. The slope of the roof depended heavily on ensuring that the chimney protruded enough through the roof to prevent any possible cases of the roof catching on fire. Therefore, the height of the columns governed the slope of the roof. The height of the east columns will be 10 feet tall and the height of the

west columns will be 9 feet tall to ensure appropriate clearance. The ramada will have 8 columns in total, 4 columns located at each corner and 4 additional columns located midlength of the longer edge. The number of columns was determined by the beam analysis. When the design initially had 4 columns, the beam spanning between the columns was 24' long and needed to be a very large and expensive member. Therefore, more columns were added to reduce the length of the beams. Six columns were attempted but the beam size was still too large and expensive. Eight columns resulted in standard sized beams. A visual representation of these measurements can also be seen in Figures 5-2 and 5-3 located below.

Figure 5-2: Civil 3D South View of Ramada Geometry

Figure 5-3: Civil 3D East View of Ramada Geometry

5.2 Design Analysis

The design analysis of the ramada consisted of the creation of design loads, roof decking design, wood elements design including joists, beams, and columns, analysis of lateral force resisting system, connection design, and foundation design. The ASCE 7-16 Minimum Design Loads and Associated Criteria for Building and Other Structures, National Design Specifications for Wood Construction (NDS), and a Simpson Strong-Tie catalog were used in these processes.

5.2.1 Design Loads

Structural analysis was performed by following the guidelines outlined in the International Building Code (IBC), American Society of Civil Engineers (ASCE) 7-16, The City of Flagstaff Standards, and NAU's Technical Standards. The City of Flagstaff mandates that the 2018 IBC be used for structural design. Further, Section 1605 of the IBC specifies that the ASCE 7-16 must be used when determining design loads. The design loads for the ramada were based on the "Minimum Design Loads and Associated Criteria for Building and Other Structures" (ASCE 7-16) and NAU Technical Standards. The team calculated the dead, live, snow, wind, and seismic loads for the proposed structure.

Table C3.1-1a Minimum Design Dead Loads from ASCE 7-16 was used to determine the dead loads. Within this table, the smallest (thickest) gauge decking was chosen for the roof of the ramada. The total dead load is 6 psf. The live load was based on ASCE 7-16 Table 4.3-1 "Minimum Uniformly Distributed Live Loads" for "Roof areas not intended for occupants" with no live load reduction. Snow load was determined using various tables within ASCE 7-16 and City of Flagstaff standards. The total roof live load is 20 psf. The ramada was classified as Category B for both Surface Roughness and Exposure category due to it being in a wooded area and height of the structure less than 30ft. The new structure is defined as Risk category II due to it not qualifying for other categories. Risk category I includes buildings/structures that pose little-to-no threat to the public in the event of failure. Conversely Risk category III includes buildings/structures that pose high threat to the public in the event of failure. The total snow load is 51 psf.

The design loads for wind are found using Components and Cladding (C&C ASCE 7-16 Chapter 30) and Main Wind Force Resisting System (MWFRS ASCE 7-16 Chapter 27). Using the Applied Technology Council (ATC) Hazards by Location tool, the wind speed in Flagstaff was found to be 101 mph for Risk Category II. Similar to snow load calculation, the wind load was calculated using variables such as exposure category, roof exposure, ground elevation factor, etc. All these factors are found in the ASCE 7-16. The maximum down C&C wind load is 28 psf and the maximum uplift is 35 psf. The maximum MWFRS wind load is 16 psf.

The design load for seismic was found using the ATC Hazards by Location tool. The website provided many variables needed to calculate the seismic load. ASCE 7-16 Chapter 12 was used to calculate the seismic load. Both the vertical and horizontal load caused by seismic activity was calculated. The vertical seismic load is 0.0646*dead load in psf and the horizontal seismic load is 0.2153*seismic weight in psf.

Refer to Appendix B for excel calculations for the dead load, live load, snow load, wind load for a monoslope roof, seismic load, and load combinations. See Table 5-2 for a summary of the design loads.

Load Type	Load in psf
Dead	6
Live (roof)	20
Snow	51
Wind (gravity)	30
Wind (uplift)	37
Wind (lateral)	16
Seismic (horizontal)	3.5
Seismic (vertical)	1.4

Table 5-2: Design Loads

5.2.2 Decking

The decking to be used is 20-gauge corrugated metal decking. This gauge was determined by looking at a Canam Steel Deck catalog and choosing a gauge that could support the max loading of 57 psf [12]. Canam is the leading manufacturer of steel deck products. The length of the roof is 19'-0" therefore, two lengths of 12'-0" will be used. In order for the ridges to allow for water drainage, the decking shall be laid where the corrugations are running parallel to the joists. The decking will not be a structural member.

5.2.3 Joist Design

The bending capacity, shear capacity, and deflection capacity were calculated for the joists.

5.2.3.1 Calculations

The National Design Specification (NDS) for Wood Construction written by the American Wood Council was used to design the joists. According to the NDS, wood members must be designed to resist bending stress, shear stress, and deflection. More specifically, Chapter 3 Design Provisions and Equations of the NDS was used. For bending stress, the actual bending stress is compared with the allowable bending stress to determine the percent stressed the member is from bending. The actual bending stress was calculated using Equation 5.1.

Equation 5. 1: Actual bending stress

$$f_b = \frac{M}{S}$$

where,

$$f_b = actual \ bending \ stress \ (psi)$$

 $M = bending \ moment \ (lb - in) = \frac{WL^2}{8}$
 $W = distributed \ load \ (lb/in)$
 $L = length \ of \ joist \ (in)$
 $S = section \ modulus \ (in^3) = \frac{bd^2}{6}$
 $b = breadth \ of \ member(in)$
 $d = depth \ of \ member(in)$

The allowable bending stress was calculated using Equation 5.2.

Equation 5. 2: Allowable bending stress

 $F'_{b} = F_{b} * C_{D} * C_{M} * C_{t} * C_{L} * C_{F} * C_{fu} * C_{i} * C_{r}$ where, $F'_{b}: allowable bending stress (psi)$ $F_{b}: bending stress based on material (psi)$ $C_{D} = load distribution factor$ $C_{M} = wet service factor$ $C_{t} = temperature factor$ $C_{L} = beam stability factor$ $C_{F} = size factor$ $C_{fu} = flat use factor$ $C_{i} = incising factor$ $C_{r} = repetitive member factor$ The percentage stressed due to bending was calculated using Equation 5.3.

Equation 5. 3: Percentage of stress due to bending

$$\% = \frac{f_b}{F'_b} * 100$$

where,

$$f_b = actual \ bending \ stress \ (psi)$$

 F'_b : allowable bending stress (psi)

For calculating the shear stress in the beam, the same process was used by finding the actual shear stress and comparing it to the allowable shear stress. The actual shear stress was calculated using Equation 5.4.

Equation 5. 4: Actual shear stress

$$f_v = \frac{3V}{2bd}$$

where,

$$f_v = actual shear stress (psi)$$

 $V = shear (lb) = \frac{WL}{2}$
 $W = distributed load (lb/in)$
 $L = length of joist (in)$
 $b = breadth of member (in)$
 $d = depth of member (in)$

The allowable shear stress was calculated using Equation 5.5.

Equation 5. 5: Allowable shear stress

 $F'_{v} = F_{v} * C_{D} * C_{M} * C_{i}$ where, $F'_{v}: allowable shear stress (psi)$ $F_{v}: shear stress based on material (psi)$ $C_{D} = load distribution factor$ $C_{M} = wet service factor$ $C_{t} = temperature factor$ $C_{i} = incising factor$

The percentage stressed due to bending was calculated using Equation 5.6.

Equation 5. 6: Actual bending stress

$$\% = \frac{f_v}{F'_v} * 100$$

where, $f_v = actual \ bending \ stress \ (psi)$ F'_v : allowable bending stress (psi)

For both the bending check and shear check, the bending stress and shear stress based on the material can be found in the NDS Supplement. More specifically, Tables 4A through 4F provide these values for different types of wood. Hem Fir was chosen for the joists as Hem Fir is the most common type of wood used for 2x members. The NDS specifies in Section 3.5.1 that the deflection of a wood member is to be calculated using standard methods of engineering mechanics. The formula for calculating deflection, in inches, can be seen in Equation 5.7.

$$\delta = \frac{5WL^4}{384EI}$$

Calculation	Result
Bending Stress (%)	86.8
Shear Stress (%)	27.9
Deflection (in)	0.72

where,

$$\delta = deflection (in)$$

 $W = distributed load (lb/in)$
 $L = length of joist (in)$
 $E = beam modulus of elasticity (psi)$
 $I = beam moment of inertia (in4) = $\frac{bh^3}{12}$$

This deflection is compared to the allowable beam deflection. The allowable beam deflection was calculated using Equation 5.8.

Equation 5. 8: Allowable beam deflection

$$\delta' = L/240$$
where,
$$\delta' = deflection (in)$$

$$L = length of joist (in)$$

The allowable deflection is specified in the International Building Code in Table 1604.3. The deflection calculated in Equation 5.7 must not exceed the allowable deflection calculated in Equation 5.8. The calculations for the bending stress, shear stress, and deflection can be found in Appendix B.

5.2.3.2 Results

The selected size for the joists is a 2x12 Hem Fir #2 wood member. A 19 foot 2x12 Hem Fir #2 joist with a tributary width of 1' was calculated to

have a bending stress of 86.8%, a shear stress of 27.9%, and a total deflection of 0.72 inches. A summary of these results can be seen in Table 5-3.

Calculation	Result
Bending Stress (%)	86.8
Shear Stress (%)	27.9
Deflection (in)	0.72

Table	5-	3:	Typical	Joist	Results
-------	----	----	---------	-------	---------

Three 19 foot 2x12 Hem Fir #2 joists nailed together with a tributary width of 2.75' was calculated to have a bending stress of 61.2%, a shear stress of 25.58%, and a deflection of 0.66 inches. These joists have more load applied to them as they are framing the chimney and therefore have a higher tributary width. A summary of these results can be seen in Table 5-4.

Table 5-4: Typical Chimney Results

Calculation	Result
Bending Stress (%)	61.2%
Shear Stress (%)	25.58%
Deflection (in)	0.66

Figure 5-4 shows the framing around the chimney in more detail.

Figure 5-4: Chimney Framing

5.2.4 Beam Design

5.2.4.1 Calculations

The same methods for calculating the bending stress, shear stress, and deflection for the joist design were used for the beam design. The only difference in the calculations is the loading applied to the beam and the beam material. Members that are larger than a 2x member are most commonly available in Douglas Fir #2 rather than Hem Fir #2. Douglas Fir #2 is a stronger wood type than Hem Fir #2 and therefore has higher bending stress and shear stress capacity. The load applied to the beam was calculated by determining the reaction at the end of a joist and dividing it by the joist spacing to get a load in pounds per linear foot (plf) applied to the beam. The calculations for beams can be found in Appendix D.

5.2.4.2 Results

A 8 foot 8x12 Douglas Fir #2 beam with a tributary width of 9' was calculated to have a bending stress of 59.1%, a shear stress of 15.58%, and a total deflection of 0.12 inches. A summary of these results can be seen in Table 5-5. These can be seen in Figures 5-2 and 5-3.

Table 5- 5: Beam Results

Calculation	Results
Bending Stress (%)	59.1
Shear Stress (%)	15.58
Deflection (in)	0.12

5.2.5 Column Design

5.2.5.1 Calculations

The same concepts such as shear stress and deflection were used to calculate the column capacity. Sections 6, 7, and 10 of Chapter 3 of the NDS specify the calculations needed to design a wood column. Rather than checking the bending stress, columns need to be checked for compression strength. The actual compression stress is compared with the allowable compression stress to determine the percent stressed the member is from compression. The actual compression stress was calculated using Equation 5.9.

Equation 5. 9: Actual compression stress parallel to grain

$$f_c = \frac{P}{A}$$

where, $f_c = actual \ compression \ stress \ parallel \ to \ grain \ (psi)$ $P = axial \ load \ applied \ to \ column \ (lb)$ $A = area \ of \ cross \ section \ (in^2)$ The allowable compression stress was calculated using Equation 5.10.

Equation 5. 10: Allowable compression stress

 $F'_{c} = F_{c} * C_{D} * C_{M} * C_{t} * C_{F} * C_{i} * C_{P}$ where, $F'_{c} : allowable \ compression \ stress \ parallel \ to \ grain \ based \ on \ material \ (psi)$ $F_{c} : compression \ stress \ parallel \ to \ grain \ based \ on \ material \ (psi)$ $C_{D} = load \ distribution \ factor$ $C_{M} = wet \ service \ factor$ $C_{F} = size \ factor$ $C_{i} = incising \ factor$ $C_{P} = column \ stability \ factor$

The column stability factor was calculated using Equation 5.11.

Equation 5. 11: Column stability factor

$$C_{P} = \frac{1 + (F_{CE}/F_{c}^{*})}{2c} - ((\frac{1 + (F_{CE}/F_{c}^{*})}{2c})^{2} - (\frac{F_{CE}/F_{c}^{*}}{c}))^{1/2}$$
where,

$$C_{P} = column \ stability \ factor$$

$$F_{CE} = \frac{0.822 * E_{min}'}{(l_{e}/d)^{2}}$$

$$E_{min}' = adjusted \ modulus \ of \ elasticity \ (psi)$$

$$l_{e} = effective \ column \ length \ (in) = K_{e} * l$$

$$K_{e} = buckling \ length \ coefficient$$

$$l = column \ length \ (in)$$

$$d = depth \ of \ member \ (in)$$

$$F_{c}^{*} = reference \ compression \ design \ value \ parallel \ to$$
grain multiplied by all applicable adjustment \ factors \ except \ C_{P} \ (psi)
$$c = 0.8 \ for \ sawn \ lumber$$

The percentage of stress due to compression was calculated using Equation 5.12.

Equation 5. 12: Percentage of stress due to compression

$$\% = \frac{f_c}{F'_c} * 100$$

where,

 $f_c = actual \ compression \ stress \ parallel \ to \ grain \ (psi)$ $F'_c: \ allowable \ compression \ stress \ parallel \ to \ grain \ (psi)$ The shear stress was calculated using Equation 5.4, 5.5, and 5.6. The deflection was calculated using Equation 5.7, 5.8, and 5.13.

Equation 5. 13: Deflection due to axial load

$$\delta = \frac{PL}{AE}$$
where,

 $\delta = deflection due to axial load (in)$ P = axial load applied to column (lb) L = length of column (in) A = area of cross section (in²) E = beam modulus of elasticity (psi)

Due to the beam bearing on the compression member (column), the compressive bearing stress must be calculated for the column. The actual compressive bearing stress was calculated using Equation 5.9. This equation can be found in Section 3.10.1 of the NDS. The actual compressive bearing stress is then compared to the Fc* value found in Equation 5.9 to determine the percent stressed, seen in Equation 5.14.

Equation 5. 14: Actual compression stress parallel to grain

$$\% = \frac{f_c}{F_c^*} * 100$$
where

 f_c = actual compression stress parallel to grain (psi) F_c^* = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_P (psi)

5.2.5.2 Results

The middle tallest columns, 10 feet tall, were designed and the 9 foot columns will work by inspection. The middle columns are most stressed due to their larger tributary width of the roof. A 8x8 Douglas Fir #2 column with a tributary width of 12' was calculated to have a bending stress of 25.3%, a shear stress of 1.75%, a compression stress of 29.4%, and a total deflection of 0.2 inches. The calculations for columns can be found in Appendix F. A summary of these results can be seen in Table 5-6.

Calculation	Results
Bending Stress (%)	25.3
Shear Stress (%)	1.75

29.4

0.2

Table 5- 6: Column Results

Compression Stress (%)

Deflection (in)

5.2.6 Foundation Design

5.2.6.1 Calculations

The foundation was designed by following Terzaghi's Bearing Capacity Equation for square foundations. From Section 6.3 of "*Principles of Foundation Engineering*" by Braja M. Das and Nagaratnam Sivakugan can be seen below.

Equation 5. 15: Ultimate bearing capacity

 $\begin{aligned} q_u &= 1.3c'N_c + qN_q + 0.4\gamma BN_\gamma \ (square\ foundation) \\ & \text{where,} \\ c' &= soil\ cohesion \\ \gamma &= unit\ weight\ of\ soil\ (lb/ft^3) \\ q &= effective\ stress\ at\ the\ bottom\ of\ the\ foundation\ (psi) \\ & N_c, N_q, N_\gamma &= bearing\ capacity\ factors \\ & B &= diameter\ of\ foundation\ (ft) \end{aligned}$

The effective stress is calculated using equation 5.16 from the *"Principles of Foundation Engineering."*

Equation 5. 16: Effective stress

$$\begin{split} q &= D_f \gamma \\ & \text{where,} \\ q &= effective \ stress \ at \ the \ bottom \ of \ the \ foundation \ (psi) \\ D_f &= depth \ of \ foundation \ (ft) \\ \gamma &= unit \ weight \ of \ soil \ (lb/ft^3) \end{split}$$

Terzaghi's bearing capacity equation has been modified while recognizing the three components from cohesion, surcharge and the soil weight that contribute to the ultimate bearing capacity. The soil was classified as SP-SM poorly graded sand with silt which has a cohesion value of zero. The bearing capacity factors were found using Table 6.1 - "Terzaghi's Bearing Capacity Factors," and can be seen in Appendix F. These factors were dependent on the angle of friction of the soil. The angle of friction for SP-SM is estimated to be 35 degrees, which is consistent with what is found in the Speedie Geotechnical Report.

Once the ultimate bearing capacity (q_u) was found it is necessary to determine the allowable bearing capacity (q_{all}) which is the load per unit area the foundation applies to the underlying soil when the structure is constructed. This was done by using equation 5.17 from the "*Principles of Foundation Engineering*" textbook.

Equation 5. 17: Allowable bearing pressure

$$q_{all} = \frac{q_u}{FS}$$

where, $q_{all} = allowable \ bearing \ pressure \ (psf)$ $q_u = \ ultimate \ bearing \ capacity \ (psf)$ $FS = factor \ of \ safety$

A factor of safety of 3 was used to make up for any uncertainties associated with the shear strength parameters and the simplifications used in the bearing capacity theory.
After the allowable bearing capacity was calculated the maximum allowable load (Q) could then be calculated. The maximum allowable load is the downloading from the columns the foundation can handle. The column download was calculated to be 7418 lbs. The maximum allowable load was calculated using equation 5.18 below.

Equation 5. 18: Maximum allowable soil load

 $\begin{aligned} Q &= q_{all} B\\ & \text{where,} \end{aligned}$ $\begin{aligned} Q &= maximum \ allowable \ soil \ load \ (plf) \end{aligned}$ $\begin{aligned} q_{all} &= allowable \ bearing \ pressure \ (psf) \end{aligned}$ $B &= diameter \ of \ foundation \ (ft) \end{aligned}$

After the loading calculations were completed the reinforcement needed to be added. The minimum required area of steel was calculated using equation 5.19 below from the American Concrete Institution (ACI) 318-19. Once the minimum area of steel was calculated the minimum spacing and clear cover requirements needed to be checked. This was done using equation 5.19 and 5.20 below.

Equation 5. 19: Minimum required area of reinforcement

$$\begin{split} A_{s,min} &= 0.0018 A_g \\ & \text{where,} \\ A_{s,min} &= minimum \ required \ area \ of \ reinforcement \ (in^2) \\ & A_g &= gross \ cross \ sectional \ area \ (in^2) \end{split}$$

The minimum required width of the foundation to compensate the minimum amount of reinforcement was checked using Equation 5.20.

Equation 5. 20: Minimum width of foundation

 $b_{w,min} = 2(clear \ cover) + 2(stirrup \ diameter) + ND + (N-1)(clear \ spacing) + 0.5$

where,

$$b_{w,min} = minimum \ width \ of \ foundation \ (ft)$$

 $N = number \ of \ bars$
 $D = bar \ diameter \ (in)$
clear cover = 1.5" for normal exposure per ACI

stirrup diameter = 0.5 inches for #4 bars
 clear spacing = 1" minimum per ACI

5.2.6.2 Results

The ultimate bearing capacity of a 3 ft (L) x 3 ft (W) x 1 ft (D) square concrete foundation sitting on limestone bedrock was found to be 19366.27 pounds per square foot (psf).. The net allowable bearing capacity was determined to be 6353.34 psf. This value is close to the 6000 psf value given in the Speedie geotechnical report.

The maximum applied load was calculated to be 824.22 psf. All calculations can be seen in Appendix F.

The vertical reinforcement was calculated to be (3) #5 bars each way. The minimum area of steel was calculated to be 0.778 square inches. The spacing was set at 10.5" on center (O.C.) minimum. The shear reinforcement was calculated to be (3) #3 stirrups spaced at 10.5" O.C. reinforcement calculations can be seen below in Appendix H. A summary of the foundation results can be seen in Table 5-7.

Calculation	Result
Pier Depth Below Surface(ft)	2.5
Pier Height Above Surface (ft)	0.5
Pier Length and Width (ft)	3
Ultimate Bearing Capacity (psf)	19366.27
Net Allowable Bearing Capacity (psf)	6353.34
Maximum Applied Load (psf)	824.22
Minimum Required Area of Steel (in^2)	0.778
Vertical Reinforcement	(3) #5 bars at 10.5" O.C. each way
Shear Reinforcement	(3) #3 stirrups at 10.5" O.C.

5.2.7 Connection Design

5.2.7.1 Calculations

The Simpson Strong-Tie Wood Construction Connectors Catalog was used to determine the types of connections to use. This brand of connectors is very common among contractors and is widely available at local construction stores like Home Depot and Lowes. The down load, the uplift load, and the lateral load were determined for each of the connections as follows: 1) joist to beam, 2) beam to column, and 3) column to foundation. The loads at each connection can be seen in Appendix G. A summary of the end reactions can be seen in Table 5-8.

Calculation	Result
(1) Joist down load (lb)	576.234
(1) Joist uplift load (lb)	119.7
(3) Joist down load (lb)	1496.6
(3) Joist uplift load (lb)	329.175
End beam down load (lb)	3612.71
End beam uplift load (lb)	259.2
End beam lateral load (lb)	408
Middle beam down load (lb)	7225.42
Middle beam uplift load (lb)	518.4
Middle beam lateral load (lb)	816
Column down load (lb)	7418
Column uplift load (lb)	408
Column lateral load (lb)	518.4
Column moment (lb-ft)	4080

Table 5-8: Connection Results

5.2.7.2 Results

For the joist to beam connection, the 2x12 joists will be connected to the beam using a modified HU212. The modification will be the seat of the HU212 being sloped at 3.5° . For the two (3) 2x12 joists nailed together, the joists will be connected to the beam using a modified HU212-3. This connection will have the same modification of a sloped seat of 3.5° . These can be seen below in Figure 5-5.

Figure 5- 5: Typical HU Joist Hanger [14]

For the beam to column connection, the middle columns and outer columns will have different connections. The beams bearing on the middle columns will be connected with a 1616HT each side. The beams bearing on the outer columns will be connected with an LCE4. These can be seen below in Figure 5-6.

Figure 5-6: Typical HT and LCE4 [14]

For the column to foundation connection, a MPB88Z with (2) 3/4" machine bolts will be used. This connection is placed in the wet concrete when the piers are poured. This can be seen below in Figure 5-7.

Figure 5- 7: MPB88Z [14]

5.2.8 Lateral Analysis

The lateral force resisting system for the ramada is cantilevered columns. The lateral capacity of the columns was already calculated and determined in the column section of the report. More specifically, the columns were 41.7% stressed in bending, and therefore pass the lateral check. The last piece of analysis for lateral calculations is determining the size and nailing of the plywood that will provide a small amount of lateral resistance. The Special Provisions for Wind and Seismic of the National Design Specifications for Wood was used to determine this. The thickness of the plywood depends on the total load being applied; a total

max load of 51 psf. The design of plywood can be found in Appendix C. A summary of the plywood calculations can be seen in Table 5-9.

•	
Calculation	Results
Lateral load on structure (D+0.6Wx) (psf)	16
Lateral load on plywood (plf)	16
Allowable sheathing and Single-Floor grade, 6d nail size, 15/32 in panel thickness, 2 in face load (plf)	670
Ω	2
Plywood percent stress (%)	2.4

Table 5-9: Lateral Plywood Results

The plywood will be nailed directly to the top of the joists and will lie directly beneath the metal decking. The plywood will be 15/32" thick, spanning joist to joist in the north-south direction, and nailed down with 0.113" (6d) nails spaced 6" O.C.

6.0 Material Specifications

The metal roofing can be any type of metal that is 20 Gauge and corrugations spanning parallel to the roof slope. The plywood must be 15/32" thick Douglas Fir #2. The material for the joists will be Hem Fir #2. The material for the beams and columns will be Douglas Fir #2. All the connections will be Simpson Strong-Tie or equivalent. The concrete will have a minimum compressive strength of 4500 psi. The rebar will have a minimum yield strength of 60 ksi.

7.0 Costs of Design Implementation

A rough cost estimate was performed for the ramada materials. A table showing each element of the ramada and its price can be seen below in Table 7-1.

Material	Quantity	Cost	Notes
2x12 Joists*	26	\$489.00	joists 19' in length
8x12 Beams**	6	\$4,684.00	beams 12' in length
8x8 Columns**	8	\$3,803.00	(3) 10' in length, (3) 9' in length
Plywood*	456 square feet	\$311.00	area of roof = $456 \text{ ft}2$
Metal Roofing***	456 square feet	\$1,350.00	area of roof = $456 \text{ ft}2$
Philip Flat Head Sheet Metal Stainless Steel Screws	300 screws	\$30.00	
Concrete****	14 cubic feet per pier	\$520.00	1 pier=14 ft3 of concrete
Rebar****	42 feet per pier	\$336.00	each pier has 42 ft of rebar
HU212	52	\$468.00	
HU212-3	4	\$184.00	
1616HT	8	\$298.50	
LCE4	8	\$38.00	
MBP88Z	8	\$1,592.00	
Clay	0.5 cubic yards	\$40.00	
Class II Backfill	1.5 cubic yards	\$90.00	
Total		\$14,223.50	

Table 7- 1: Approximate	e Material	Estimate
-------------------------	------------	----------

*Home Depot website

**Boards and Beams website

***Roofing Calculator website

****HomeGuide website

*****Home Advisor website

The overall cost of the ramada materials is projected to be approximately \$14,546. This is above the client original budget of \$10,000. As this is a rough estimate retail stores were used to determine pricing which could lead to an increase in price. This estimate exceeds the client's budget by \$4,546. This is due to the ramada being much larger than first expected. The client wished to cover the walkways along the sides of the kiln. This increased the length and width of the ramada by a significant amount. This caused the need for longer members and overall more members. The only way to reduce the cost of this project is to reduce the size of the ramada and therefore reduce the amount of materials needed. Originally the ramada was intended to have only 4 columns with larger members but it made it harder to find larger connections. The team then decided to add more columns to reduce the size of the members and have more options for connections.

8.0 Impacts Analysis

The design and construction of this design has many social, economic, and environmental impacts.

8.1 Social

There are numerous social impacts that are a result of this project. First, the ramada allows for students and faculty of the ceramics department to use the kiln during inclement weather conditions. This allows for a positive and communal experience of using the kiln. By providing cover from weather, students and faculty will be protected and therefore enjoy firing in the existing kiln.

Second, the aesthetics of the ramada will greatly impact the student's and faculty's view on ceramics at NAU. By expanding upon the aesthetics of the complex, the ceramics department increases their uniqueness and identity on campus. Ceramics students come to NAU to help facilitate their growth as an artist, and need an environment that strikes creativity and pride. This additional ramada will allow NAU Ceramics students to be proud of their college and aid in the motivation needed to complete a new piece of art. Lastly, the construction of the ramada by construction management students will continue to back the feeling of pride the students have in their college knowing their fellow peers used the knowledge being taught to them to bring happiness to others.

8.2 Environmental

There are numerous environmental impacts that are a result of this project. First, the area has no drainage design and therefore when it rains, the water runs off of the western parking lot and down the slope and into the existing ramada. The client has specifically noted that the area gets flooded during storm events. With the construction of this new ramada, the water is being rerouted to not interfere with the covered kiln. This provides a

level of drainage control that the area lacked before. Although there is diversion of runoff from one structure, surrounding areas could potentially see an increase in runoff. This is due to the water landing on the metal roof and running off rather than landing on the kiln if the ramada were not there. Second, the height of the structure could cause disturbance to the wildlife living in the adjacent tree. Third, the construction of piers in the area could cause disturbance to the underlying soils and limestone. Depending on the type of tools used to dig the holes, the underlying soils will be disturbed.

Another environmental impact of this project is the increasing amounts of CO_2 that will be let out into the atmosphere due to increased usage of the Kiln. Before the ramda is placed the kiln is operating a minimum usage due to weather impacts, but once it is covered the kiln will be able to operate more days out of the year leading to more CO_2 being let out from the firing of the kiln. Due to the ramada being used more it will increase the usage of fuel. The increase of use of the kiln will cause more cutting down of more trees for fuel.

8.3 Economical

There are numerous economic impacts that are a result of this project. First, the existing kiln has the potential for damage and deterioration due to weathering. By protecting the kiln with a ramada, the kiln will have a longer lifespan and the university will save money rather than paying for repairs or replacements. Although the construction is an upfront cost with less maintenance repair over the years the profit of this project will increase.

Second, the ceramics department is paying to get this ramada built and is therefore assumed to be using some of the ceramic's student's tuition and fees to cover the cost. With the ability to use the kiln all year round the ceramic classes will increase in the availability. This will lead to more students having the opportunity to sign up for ceramic classes which would increase the money inflow in the ceramics complex. Another economic impact is the increase in the amount of students wanting to attend NAU's ceramics school due to the number of kilns that are available to use year round.

Lastly, the continuing commitment by NAU to keep the complex clean, safe, and updated may attract the attention of donors willing to donate their knowledge, money and time into the Ceramics Department to continue to foster the growth of the college.

9.0 Summary of Design Work

The original schedule was based on the estimated hours the team quantified for each task. This differs from the original estimated scheduling for the project. The proposed schedule can found in the Appendix Figure I-1. The actual schedule can be found in the appendix Figure I-2 which displays the team's GANTT chart that shows the task completion timeline for the project. The major change in the schedule was due to COVID-19 the school year started and finished two weeks earlier. This caused the schedule to shift. Minor setbacks were encountered but did not deter the overall schedule of the project. A setback the team experienced was unable to perform surveying during the summer due to COVID-19. The surveying was pushed towards the beginning of the semester and was completed within a few weeks of starting. Another minor setback was the team did not have lab access to perform geotechnical analysis. The team originally planned to have geotechnical started by the end of August but didn't actually start until the 2nd week of September. This shift caused the geotechnical analysis to be completed by the 60% submittal instead of the 30% submittal. In order to keep the schedule on track, structural analysis started before the 30% submittal. The structural analysis was completed before the 90% submittal due to delays in calculations.

10.0 Summary of Staffing and Engineering Costs

In our original proposal the team estimated 786 hours to complete the ramada structure, seen in Table 10-1. This included the site visits, surveying, geotechnical and structural analysis, and design work for the project. The original cost of the engineering services was estimated to be \$80,248 which also included supplies.

	Proposed Hours/Budget					
	Classification/Role	Hours	Hourly Rate	Cost		
	Senior Engineer	72	\$201	\$14,504		
	Engineer	183.5	\$132	\$24,310		
Personnel	Engineer in Training	321.5	\$99	\$31,944		
	Lab Technician	10	\$47	\$476		
	Engineering Intern	129	\$21	\$2,805		
	Administrative Assistant	70	\$62	\$4,359		
	Total P	\$78,398				
	Classification	Days	Daily Rate (\$)	Cost		
Supplies	Survey	1	\$250	\$250		
	Geotechnical Equipment	1	\$200	\$200		
	Geotechnical Lab	4	\$350	\$1400		
	Total S	\$1850				
Total	Tota	\$80,248				

Table	10-	1:	Proposed	Staffing	Breakdown
1 0010	10		roposed	Sicijjing	Dictated in

The team accumulated a total of 621 hours to complete the project. The Table 10-2 below shows the distribution of hours and cost of each personnel. The total cost for engineering services and lab supplies totaled at \$65,283. The change in hours came from various aspects in the project. Originally the team was looking to complete the project in 20 weeks but decreased to 16 weeks due to the pandemic. It was originally intended to complete surveying during the summer but there was no access to survey equipment, which shortened the project length. A lot more time was allocated to the plan set when in reality the team did not spend as much time on it. The scope of the hydraulic analysis also changed which caused a decrease in ours; Originally it was thought the hydraulic analysis would be more in depth. Another change came in the geotechnical analysis. The team was unable to perform the direct shear test due to the equipment being under maintenance. Another restriction that caused lab personnel hours to decrease is due to COVID-19, not all team members were able to be in the lab at once as the team took precautions.

	Actual Hours/Budget					
	Classification/Role	Hours	Hourly Rate	Cost		
	Senior Engineer	65.75	\$201	\$13,245		
	Engineer	200	\$132	\$26,496		
Personnel	Engineer in Training	175.5	\$99	\$17,438		
	Lab Technician	20	\$47	\$952		
	Engineering Intern	115	\$21	\$2,500		
	Administrative Assistant	45	\$62	\$2,802		
	Total Pe	\$63,433				
	Classification	Days	Daily Rate (\$)	Cost		
Supplies	Survey	1	\$250	\$250		
	Geotechnical Equipment	1	\$200	\$200		
	Geotechnical Lab	4	\$350	\$1400		
	Total S	\$1850				
Total	Total	\$65,283				

Table 10-2: Actual Staffing Breakdown

The following tables display the hours broken down per role for each task. As expected, the senior engineer hours were kept as low as possible as they had the highest hourly rate. The team originally estimated that the engineer in training (EIT) would accumulate a majority of the hours, seen in Table 10-3. The bulk of the EIT's hours were to come from the project manager task as the project manager would mostly oversee the design of the project. The engineer and intern would come in a second due to assisting the EIT. Table 10-4 shows the team's accumulated

hours broken down per role for each task. In the actual hours log, the team saw an increase of hours for the engineer while the EIT and intern decreased in hours. The engineer had a slight increase in most of the tasks than originally anticipated. The engineer saw more work than anticipated due to the lack of structural engineering knowledge the group had. The structural engineering courses at NAU are limited. Many of the calculations had to be led and taught by the engineer. Additionally, this project is heavily hand calculation based. The team did not have access to structural engineering programs and therefore, hand calculations were required.

Proposed Staff Breakdown per Task						
Task		Roles				
	SENG	ENG	EIT	LAB	INT	AA
Site Visit (hrs)	0	4	10.5	0	11.5	0
Geotechnical Analysis (hrs)	0	10	0	10	16	10
Structural Analysis (hrs)	10	33	55.5	0	25	0
Material Specification (hrs)	2	3	8	0	0	0
Plan Set/Cost Estimate (hrs)	12	12	22	0	7	0
Project Management (hrs)	48	121.5	225.5	0	69.5	60

Table 10-3: Proposed Hours Broken Down per Role

Actual Staff Breakdown per Task						
Task		Roles				
	SENG	ENG	EIT	LAB	INT	AA
Site Visit (hrs)	7.25	15	24	1	13.5	0
Geotechnical Analysis (hrs)	0	16.5	1	13	0	0
Structural Analysis (hrs)	21.5	39.5	46	0	17.5	0
Material Specification (hrs)	3	4	1	0	0	0
Planset/Cost Estimate (hrs)	4	8	3	0	12	0
Project Management (hrs)	30	117	100.5	6	72	45

Table 10-4: Actual hours broken down per role

11.0 Conclusion

The objective of this project was to provide shelter from weather for students and faculty who use a kiln at the Ceramics Complex at Northern Arizona University. A topographic survey was needed to create a topographic map and site map. Geotechnical analysis was needed to determine the soil classification and to determine the allowable soil bearing pressure of the soil around the kiln. Two alternatives were developed for the type of roof structure the ramada would have. The two alternatives were evaluated in a decision matrix to determine the best option. Wood structural analysis was performed to determine the sizes of wood members needed for the proposed ramada geometry. Foundation analysis was needed to determine the size of footings that the columns required to keep the structure stable. The project was completed on time and met the objectives of the project.

12.0 References

- [1] *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*. Reston: THE AMERICAN SOCIETY OF CIVIL ENGINEERS, 2017.
- [2] "ADOPTED BUILDING CODES: "2018 SUITE OF CODES." City of Flagstaff, 2018.
- [3] "Design Criteria: Building Division." Coconino County Arizona Community Department, 2016.
- [4] "INTRODUCTION AND USER GUIDE: DESIGN GUIDELINES AND TECHNICAL STANDARDS." Northern Arizona University, 2018.
- [5] International Building Code. ICC Digital Codes Library, 2015.
- [6] National Design Standards for Wood Construction. American Wood Council, 2015.
- [7] "Project Manual for Ceramics Clay Mixing & Chemical Storage Facility." Johnson Walzer Associates, LLC., 2012.
- [8] Jason Hess (2020). 'Client Meeting.' *Client Meeting January 24th and August 26th*. Ceramics Complex, Northern Arizona University.
- [9] Forest Products Laboratory. 1999. Wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 463 p.
- [10] "Plastic Limit Test of Soil | Importance & Lab Procedure of Plastic Limit Test", *Dream Civil*, 2020. [Online]. Available: https://dreamcivil.com/plastic-limit-test/. [Accessed: 06-Oct-2020].
- [11] "LIQUID LIMIT OF SOIL WHAT, WHY & HOW? CivilBlog.Org", CivilBlog.Org, 2020. [Online]. Available: https://civilblog.org/2015/03/07/liquid-limit-of-soil-what-whyhow/#:~:text=Why%20to%20Know%20Liquid%20Limit%20of%20Soil%3F%201,consi stency%20of%20soil%20on%20site.%20More%20items...%20. [Accessed: 06- Oct-2020].
- [12] Canam-construction.com. 2020. [online] Available at: https://www.canam-construction.com/wp-content/uploads/2014/11/canam-steel-deck.pdf> [Accessed 3 November 2020].
- [13] "Building A Berm: How Do I Make A Berm," StackPath. [Online]. Available: https://www.gardeningknowhow.com/special/spaces/building-a-berm-how-do-i-make-aberm.htm. [Accessed: 12-Nov-2020].
- [14] "Wood Construction Connectors 2017-2018." Simpson Strong-Tie, 2017.

Appendices

Appendix A- Geotech Testing

A-1 Atterberg Limits Data

nole I.	н	ole	1:
---------	---	-----	----

Sample	Mc (g)	Mm (g)	Md (g)	N	Moisture Content (%)
1	10.7	27.7	24.5	46	23.1884058
2	10.6	19.8	18.4	33	17.94871795
3	10.8	26.5	23.5	19	23.62204724
4	10.8	23.4	21	16	23.52941176
5	11	25.4	22.5	14	25.2173913

Hole 2:

Sample	Mc (g)	Mm (g)	Md (g)	N	Moisture Content (%)
1	10.9	27	23.8	55	24.80620155
2	16.9	32.8	29.5	30	26.19047619
3	10.9	27.3	24	22	25.19083969
4	10.8	24.3	21.5	16	26.1682243
5	10.6	22.7	20.1	13	27.36842105

LL = 22.44680625 <-- N=25

Atterberg Limit ResultsPlastic Limit32.93Liquid Limit24.19Pasticity Index-8.75

LL = 25.9257626 <--- N=25

Average LL = 24.19

A-2 Sieve Analysis Data

Sieve #	Sieve Opening (mm)	Mass of Empty Sieve (g)	Mass of Sieve and retained sample (g)	Mass of Sample (g)	Rn	Sum Rn	Percent Finer	
4	4.75	510.2	564.1	53.9	11.29268804	11.29268804	88.70731196	
10	2	446.1	495.9	49.8	10.4336895	21.72637754	78.27362246	
20	0.85	415.7	483	67.3	14.10014666	35.8265242	64.1734758	
40	0.425	393.3	460.1	66.8	13.99539074	49.82191494	50.17808506	
60	0.25	343.6	387.5	43.9	9.197569663	59.0194846	40.9805154	
140	0.106	339.4	427.6	88.2	18.47894406	77.49842866	22.50157134	
200	0.075	326.1	388.2	62.1	13.0106851	90.50911376	9.490886235	
pan	0	369.9	415.2	45.3	9.490886235	100	0	
				477.3				
194.1	501.6	307.5						6.680869446
194.1	364.7	170.6						
		478.1						
			evap	143.8	268.8	125	moist	
				143.8	200.6	56.8	dry	
				0.4070000407				
			2%	0.1673290107			Liele 1 Dertiel	o Diotribution
							Mole I Partici	
	Hole 1 Par	ticle Distribution		% sand	79 21642573		% gravel	11 29268804
	100			% gravel	11 29268804		% fines	9 490886235
				% fines	9.490886235			
							D10	0.15
	75			D10	0.15		D30	0.25
	(%)			D30	0.25		D60	0.6
	les les			D60	0.6			
	E 50						Cc	0.694444444
	Licer			Cc	0.694		Cu	4
	<u>م</u> 25			Cu	4			
	o 💆							
	U	1	2 3 4					

40.5367771

Sieve #	Sieve Opening (mm)	Mass of Empty Sieve (g)	Mass of Sieve and retained sample (g)	Mass of Sample (g)	Rn	Sum Rn	Percent Finer
4	4.75	520.7	619.9	99.2	17.69532644	17.69532644	82.30467356
10	2	447.3	566.2	118.9	21.20941848	38.90474492	61.09525508
20	0.85	395.4	502.6	107.2	19.12236889	58.02711381	41.97288619
40	0.425	390.6	452.7	62.1	11.07741705	69.10453086	30.89546914
60	0.25	345.7	386.3	40.6	7.242240457	76.34677132	23.65322868
140	0.106	338.5	407	68.5	12.21905102	88.56582233	11.43417767
200	0.075	318.6	361	42.4	7.563325009	96.12914734	3.870852658
pan	0	362.4	384.1	21.7	3.870852658	100	0
			•	560.6	•	•	•
220.3	577.8	357.5					
220.3	426.1	205.8					
		563.3					

0.4793183029

evap

2%

129.2 227.1 129.2 167.9

% sand 78.43382091

% fines 3.870852658

0.15

0.45

1.55

0.871

10.33

D10

D30

D60

Сс

Cu

97.9 moist 38.7 dry

Hole 2 Partic	Hole 2 Particle Distribution				
% sand	78.43382091				
% gravel	17.69532644				
% fines	3.870852658				
D10	0.15				
D30	0.45				
D60	1.55				
Сс	0.8709677419				
Cu	10.33333333				

Appendix B - Design Load Calculations and Results

B-1 Dead and Live Load Calculations

Roof live load 20 psf <-- Table 4.3-1

="Lr = "& B15 & " psf"

B-2 Dead and Live Load Results

B-3 Snow Load Calculations

<u>Per ASCE 7-16</u>

Snow Load

Exposure Category	В		< Section 26.7.3
Roof Exposure	Partially exposed		< either fully exposed, partially exposed, or sheltered
Risk Category	II		< Table 1.5-1
Surface Roughness	В		< Section 26.7.2
pg	60	psf	< per City of Flagstaff
Exposure factor (Ce)	1		< Table 7.3-1 (exposure category B and partially enclosed
Thermal factor (Ct)	1.2		< Table 7.3-2 (unheated and open air structures)
Importance factor (Is)	1		< Table 1.5-2 (risk category II)
pf	=0.7*B8*B9*B10*B11	psf	< flat roof snow load < Eqn
roof slope (3.3:12)	=ATAN(3.3/12)*180/PI()	degrees	
roof type	slippery		< slippery or non-slippery
Slope factor (Cs)	1		< Figure 7.4-1
ps	=CEILING(B13*B17,1)		< sloped roof snow load
		7	

="SL = "& B19 & " psf"

B-4 Snow Load Results

<u>Per ASCE 7-16</u>

Snow Load

Exposure Category	В		< Section 26.7.3
Roof Exposure	Partially exposed		< either fully exposed, partially exposed, or sheltered
Risk Category	II		< Table 1.5-1
Surface Roughness	В		< Section 26.7.2
pg	60	psf	< per City of Flagstaff
Exposure factor (Ce)	1		< Table 7.3-1 (exposure category B and partially enclosed)
Thermal factor (Ct)	1.2		< Table 7.3-2 (unheated and open air structures)
Importance factor (Is)	1		< Table 1.5-2 (risk category II)
pf	50.4	psf	< flat roof snow load < Eqn
roof slope (3.3:12)	15.376	degrees	
roof type	slippery		< slippery or non-slippery
Slope factor (Cs)	1		< Figure 7.4-1
ps	51		< sloped roof snow load
	SL = 51 psf]	

B-5 Wind Load (C&C) Calculations

er ASCE 7-16		MONOSLOPE		h =(9.5+10.5)/2 ft
Open Wind Load -	Components and Cladding (Ch	pt 30)		L =SQRT(18^2+4.5^2 ft
	V (mph)	101		< ATC hazards h/L =H1/H2
	Exposure Category	В		< Section 26.7.3
	Roof Exposure	Partially exposed		< either fully exposed, partially exposed, or sheltered
	Risk Category	II.		< Table 1.5-1
	Surface Roughness	В		< Section 26.7.2 wooded area/numerous closely spaced obstructions
	Wind directionality factor (Kd)	0.85		< Section 26.6 < Buildings-components and cladding
	Topographic factor (Kzt)	1		< Section 26.8 given
	Ground elevation factor (Ke)	=exp(-0.0000362*6900)		< Section 26.9 ground elevation above sea level zg = 6900 ft
Velocity pressure	e exposure coefficient (Kz or Kh)	=0.57		< Section 26.10.1 height above ground level is 0 ft
	Velocity pressure (qh)	=0.00256*B11*B9*B8*B10*(B3^2)	psf	< Section 26.10.2 < Eqn 26.10-1 $q_z = 0.00256K_zK_{zr}K_dK_eV^2$ (lb/ft ²); $V \text{ in mi/h}$ (26.10-1)
	Gust effect factor (G)	0.85		< Section 26.11 given
	Enclosure classification	open		< Section 26.12 no walls
	max roof area	=18*24	ft2	(18' wide x 24' long)
				roof angle (3.3:12 slope) =ATAN(3.3/12)*18C degree
	Net pressure coefficient (CN)	='C&C Interpolation'!C7		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 3, = <a^2< td=""></a^2<>
	Net pressure coefficient (CN)	='C&C Interpolation'!C8		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >a^2,=<4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!C9		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!D21		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, = <a^2< td=""></a^2<>
	Net pressure coefficient (CN)	='C&C Interpolation'!D22		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >a^2,=<4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!D23		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >4.0a^2
	WL	. =ROUNDUP(\$B\$12*\$B\$13*B18,0)	psf	Down Load for area = <a^2< td=""></a^2<>
	WL	=ROUNDUP(\$B\$12*\$B\$13*B19,0)	psf	Down Load for area >a^2,=<4.0a^2
$p = q_h G C_N$	(30.7-1) WL	=ROUNDUP(\$B\$12*\$B\$13*B20,0)	psf	Down Load for area >4.0a^2
	WL	. =ROUNDUP(\$B\$12*\$B\$13*B21,0)	psf	Uplift for area = <a^2< td=""></a^2<>
	WL	=ROUNDUP(\$B\$12*\$B\$13*B22,0)	psf	Uplift for area >a^2,=<4.0a^2
	WL	=ROUNDUP(\$B\$12*\$B\$13*B23,0)	psf	Uplift for area >4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!E7		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 2, = <a^2< td=""></a^2<>
	Net pressure coefficient (CN)	='C&C Interpolation'!E8		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >a^2,=<4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!E9		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!F21		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 2, = <a^2< td=""></a^2<>
	Net pressure coefficient (CN)	='C&C Interpolation'!F22		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >a^2,=<4.0a^2
	Net pressure coefficient (CN)	='C&C Interpolation'!F23		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >4.0a^2
	WL	. =ROUNDUP(\$B\$12*\$B\$13*B32,0)	psf	Down Load for area = <a^2< td=""></a^2<>
	WL	=ROUNDUP(\$B\$12*\$B\$13*B33,0)	psf	Down Load for area >a^2,=<4.0a^2
$p = q_h G C_N$	(30.7-1) _{WL}	=ROUNDUP(\$B\$12*\$B\$13*B34,0)	psf	Down Load for area >4.0a^2
	WL	=ROUNDUP(\$B\$12*\$B\$13*B35,0)	psf	Uplift for area = <a^2< td=""></a^2<>
	\\/!	=ROUNDUP(\$B\$12*\$B\$13*B36.0)	psf	Uplift for area >a^2.=<4.0a^2

	Net pressure coefficient	(CN) ='C&C Interpolation'!G7		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 1, = <a^2< td=""></a^2<>
	Net pressure coefficient	(CN) ='C&C Interpolation'!G8		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 1, >a^2,=<4.0a^2
	Net pressure coefficient	(CN) ='C&C Interpolation'!G9		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 1, >4.0a^2
	Net pressure coefficient	(CN) ='C&C Interpolation'!H21		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 1, = <a^2< td=""></a^2<>
	Net pressure coefficient	(CN) ='C&C Interpolation'!H22		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 1, >a^2,=<4.0a^2
	Net pressure coefficient	(CN) ='C&C Interpolation'!H23		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 1, >4.0a^2
		WL =ROUNDUP(\$B\$12*\$B\$13*B46,0)	psf	Down Load for area = <a^2< td=""></a^2<>
		WL =ROUNDUP(\$B\$12*\$B\$13*B47,0)	psf	Down Load for area >a^2,=<4.0a^2
$p = q_h G C_N$	(30.7-1)	WL =ROUNDUP(\$B\$12*\$B\$13*B48,0)	psf	Down Load for area >4.0a^2
		WL =ROUNDUP(\$B\$12*\$B\$13*B49,0)	psf	Uplift for area = <a^2< td=""></a^2<>
		WL =ROUNDUP(\$B\$12*\$B\$13*B50,0)	psf	Uplift for area >a^2,=<4.0a^2
		WL =ROUNDUP(\$B\$12*\$B\$13*B51,0)	psf	Uplift for area >4.0a^2

			Meet minimum requirement?
Zone 3	Max downward	=max(B25 psf	=if(C61>\$
	Max uplift	=min(B28 psf	=if(-C62>\$
Zone 2	Max downward	=max(B39 psf	=if(C63>\$
	Max uplift	=min(B42 psf	=if(-C64>\$
Zone 1	Max downward	=max(B53 psf	=if(C65>\$ so use 16 psf
	Max uplift	=min(B56 psf	YES
Minimum wind load requirement	16	psf < Sec	tion 27.1.5

B-6 Wind Load (C&C) Results

Per ASCE 7-16	MONOSLOPE		h 10 ft							
Open Wind Load - Components and Cladding (Chr	ot 30)		L 18.55397532 ft							
V (mph)	101		< ATC hazards h/L 0.5389680556							
Exposure Category	В		< Section 26.7.3							
Roof Exposure	Partially exposed		< either fully exposed, partially exposed, or sheltered							
Risk Category	Ш		< Table 1.5-1							
Surface Roughness	В		< Section 26.7.2 wooded area/numerous closely spaced obstructions							
Wind directionality factor (Kd)	0.85		< Section 26.6 < Buildings-components and cladding							
Topographic factor (Kzt)	1		< Section 26.8 given							
Ground elevation factor (Ke)	0.78		< Section 26.9 ground elevation above sea level zg = 6900 ft							
Velocity pressure exposure coefficient (Kz or Kh)	0.57		< Section 26.10.1 height above ground level is 0 ft							
Velocity pressure (qh)	9.86	psf	< Section 26.10.2 < Eqn 26.10-1 $q_z = 0.00256K_z K_d K_e V^2 (lb/ft^2); V in mi/h$ (26.10-1)							
Gust effect factor (G)	0.85		< Section 26.11 given							
Enclosure classification	open		< Section 26.12 no walls							
max roof area	432	ft2	(18' wide x 24' long)							
			roof angle (3.3:12 slope) 15.37625125 degrees							
Net pressure coefficient (CN)	3.549		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 3, = <a^2< td=""></a^2<>							
Net pressure coefficient (CN)	2.661		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >a^2,=<4.0a^2							
Net pressure coefficient (CN)	1.774		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >4.0a^2							
Net pressure coefficient (CN)	-4.316		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, = <a^2< td=""></a^2<>							
Net pressure coefficient (CN)	-3.123		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >a^2,=<4.0a^2							
Net pressure coefficient (CN)	-2.049		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 3, >4.0a^2							
WL	30	psf	Down Load for area = <a^2< td=""></a^2<>							
WL	23	psf	Down Load for area >a^2,=<4.0a^2							
$p = q_h G C_N \tag{30.7-1} WL$	15	psf	Down Load for area >4.0a^2							
WL	-37	psf	Uplift for area = <a^2< td=""></a^2<>							
WL	-27	psf	Uplift for area >a^2.=<4.0a^2							
WL	-18	psf	Uplift for area >4.0a^2							
Net pressure coefficient (CN)	2.661		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 2, = <a^2< td=""></a^2<>							
Net pressure coefficient (CN)	2.661		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >a^2,=<4.0a^2							
Net pressure coefficient (CN)	1.774		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >4.0a^2							
Net pressure coefficient (CN)	-3.123		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 2, = <a^2< td=""></a^2<>							
Net pressure coefficient (CN)	-3.123		< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 2, >a^2,=<4.0a^2							
Net pressure coefficient (CN)	-2.049		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 2, >4.0a^2							
WL	23	psf	Down Load for area = <a^2< td=""></a^2<>							
WL	23	psf	Down Load for area >a^2,=<4.0a^2							
$p = q_h G C_N$	(30.7-1)	WL	15	psf		Down Lo	ad for are	a >4.0a^2		
-----------------	------------------------	------	--------------	--	--	------------	-------------------------------------	--	--	--
		WL	-27	psf		Uplift for	r area = <a< td=""><td>^2</td></a<>	^2		
		WL	-27	psf		Uplift for	r area >a^:	2,=<4.0a^2		
		WL	-18	psf		Uplift for	r area >4.0)a^2		
Net	t pressure coefficient	(CN)	1.774			< Figure	e 30.7-1, ii	nterpolation between 7 deg & 15 deg, zone 1, = <a^2< td=""></a^2<>		
Net	t pressure coefficient	(CN)	1.774	< Figure 30.7-1,interpolation between 7 deg & 15 deg, zone 1, >a						
Net	t pressure coefficient	(CN)	1.774			< Figure	e 30.7-1,ir	terpolation between 7 deg & 15 deg, zone 1, >4.0a^2		
Net	t pressure coefficient	(CN)	-2.049		< Figure 30.7-1, interpolation between 7 deg & 15 deg, zone 1, = <a^< td=""></a^<>					
Net	t pressure coefficient	(CN)	-2.049			< Figure	e 30.7-1,ir	terpolation between 7 deg & 15 deg, zone 1, >a^2,=<4.0a^		
Net	t pressure coefficient	(CN)	-2.049			< Figure	e 30.7-1,ir	nterpolation between 7 deg & 15 deg, zone 1, >4.0a^2		
		WL	15	psf		Down Lo	ad for are	a = <a^2< td=""></a^2<>		
		WL	15	psf		Down Lo	ad for are	a >a^2,=<4.0a^2		
$p = q_h G C_N$	(30.7-1)	WL	15	psf		Down Lo	ad for are	a >4.0a^2		
		WL	-18	psf		Uplift for	r area = <a< td=""><td>^2</td></a<>	^2		
		WL	-18	psf		Uplift for	r area >a^:	2,=<4.0a^2		
		WL	-18	psf		Uplift for	r area >4.0)a^2		
							Meet m	inimum requirement?		
	Zo	ne 3	Max downward		30	psf	YES			
			Max uplift		-37	psf	YES			
	Zo	ne 2	Max downward		23	psf	YES			
			Max uplift		-27	psf	YES			
	Zo	ne 1	Max downward		15	psf	NO	so use 16 psf		
			Max uplift		-18	psf	YES			
Minimu	m wind load requiren	nent	16	psf		< Sectio	on 27.1.5			

B-7 MWFRS Wind Load Calculations

<u>Per ASCE 7-16</u>	MONOSLOPE]		h =(10.5+9.5)/2 ft
Open Wind Load - MWFRS (Chpt 27)				L =SQRT(18^2+4.5^2 ft
V (mph)	101		< ATC hazards	h/L =F1/F2
Exposure Category	В		< Section 26.7.3	
Roof Exposure	Partially exposed		< either fully exp	osed, partially exposed, or sheltered
Risk Category	П		< Table 1.5-1	
Surface Roughness	В		< Section 26.7.2	
Wind directionality factor (Kd)	0.85		< 26.6 and Table	26.6-1 < MWFRS
Topographic factor (Kzt)	1		< Section 26.8 an	d table in Fig. 26.8-1
Ground elevation factor (Ke)	=exp(-0.0000362*6900)		< Section 26.9	
Velocity pressure exposure coefficient (Kz or Kh)	0.57		< Section 26.10.1	
Velocity pressure (qh)	=0.00256*B11*B9*B8*B10*(B3^2)	psf	< Section 26.10.2	< Eqn 26.10-1
Gust effect factor (G)	0.85		< Section 26.11	
Enclosure classification	open		< Section 26.12	
max roof area	=18*24	ft2	(18' wide x 24' long	g)
Net pressure coefficient (CNW) - 0	='MWFRS Interpolation'!C3		< Fig. 27.3-4	
Net pressure coefficient (CNL) - 0	='MWFRS Interpolation'!C4		< Fig. 27.3-5	
Net pressure coefficient (CNW) - 180	='MWFRS Interpolation'!D3		< Fig. 27.3-6	
Net pressure coefficient (CNL) - 180	='MWFRS Interpolation'!D4		< Fig. 27.3-7	
WL	=\$B\$12*\$B\$13*B18	psf		
WL	=\$B\$12*\$B\$13*B19	psf		
WL	=\$B\$12*\$B\$13*B20	psf		
WL	=\$B\$12*\$B\$13*B21	psf		
Minimum wind load requirement	16	psf	< Section 27.1.5	

B-8 MWFRS Wind Load Results

<u>Per ASCE 7-16</u>	MONOSLOPE			h	10	ft
Open Wind Load - MWFRS (Chpt 27)				L	18.55397532	ft
V (mph)	101		< ATC hazards	h/L	0.5389680556	
Exposure Category	В		< Section 26.7.3			
Roof Exposure	Partially exposed		< either fully exp	osed, partially e	exposed, or shelte	ered
Risk Category	Ш		< Table 1.5-1			
Surface Roughness	В		< Section 26.7.2			
Wind directionality factor (Kd)	0.85		< 26.6 and Table	26.6-1	< MWFRS	
Topographic factor (Kzt)	1		< Section 26.8 an	d table in Fig. 2	6.8-1	
Ground elevation factor (Ke)	0.78		< Section 26.9			
Velocity pressure exposure coefficient (Kz or Kh)	0.57		< Section 26.10.1	L		
Velocity pressure (qh)	9.86	psf	< Section 26.10.2	2	< Eqn 26.10-1	
Gust effect factor (G)	0.85		< Section 26.11			
Enclosure classification	open		< Section 26.12			
max roof area	432	ft2	(18' wide x 24' lon	g)		
Net pressure coefficient (CNW) - 0	-0.6		< Fig. 27.3-4			
Net pressure coefficient (CNL) - 0	-1.4		< Fig. 27.3-5			
Net pressure coefficient (CNW) - 180	-1		< Fig. 27.3-6			
Net pressure coefficient (CNL) - 180	0		< Fig. 27.3-7			
WL	-5.027	psf				
WL	-11.729	psf				
WL	-8.378	psf				
WL	0	psf				
Minimum wind load requirement	16	psf	< Section 27.1.5			_

Appendix C- Plywood Design

C-1 Plywood Calculations

			1				SF	A				B
		Minimum	Minimum	Minimum Nominal Wolth	6 ir	. Nail Sj an	acing at d suppo	diaphra	gm boun mbers	daries	6 in. Nail diaphragm and support	Spacing at boundaries ing member
Sheathing Grade	Common Nail Size	Fastener Penetration in Framing	Nominal Panel Thickness	of Nailed Face at Supported Edges and Boundaries		Case 1		c	ises 2,3,	1,5,6	Case 1	Cases 2,3,4,5,6
		(uc)	(ur.)	(in.)	v. (plf)	((kip	ì, s/in.)	v. (plf)	(kip	3. s/in.)	v (plf)	v (plf)
	64	1-1/4	5/16	2	330	OSB 9.0	PLY 7.0	250	OSB 6.0	PLY 4.5	460	350
Character 1	84	1.3/8	3/8	3	370 480	7.0	6.0 7.0	280 360	4.5	4.0	520 670	390 505
Structural I		1.00		3	530	7.5	6.0	400	5.0	4.0	740	560
	100	1-1/2	15/32	3	640	12	9.0	480	8.0	6.0	895	670
			5/16	2	300 340	9.0 7.0	6.5	220 250	6.0 5.0	4.0	420	310
	6d	1-1/4	3/8	2	330	7.5	5.5	250	5.0	4.0	460	350
			3/8	3	370 430	<u>6.0</u> 9.0	4.5 6.5	280 320	4.0 6.0	3.0	520 600	390 450
				3	480	7.5	5.5	360	5.0	3.5	670	505
Single-Floor	8d	1-3/8	7/16	3	510	7.0	5.5	380	4.5	3.5	715	530
			15/32	2	480	7.5	5.5	360	5.0	4.0	670	505
			15/32	2	510	15	9.0	380	10	6.0	740	530
	10d	1-1/2		3	580	12	8.0	430	8.0	5.5	810	600
			19/32	3	640	13	8.5	430	8.5	5.5	800	670

NDS SDPWS Table 4.2C Nominal Unit Shear Capacities for Wood Frame-	Diaphragms				
	Lateral load		51	psf	< D+0.45Wx+0.75S
	Lateral Load	=B3*1	I	plf	=if(B5 <b8, "ok",<="" td=""></b8,>
Sheathing and Single-Floor grade, 6d nail size, 5/16 in pane in face	l thickness, 2	=420/	2	plf	< omega=2

Use: 5/16" plywood with 6" nail spacing

Table 3.2.2 Nominal Uniform Load Capacities (psf) for Roof Sheathing Resisting Out-of-Plane Wind Loads^{1,3}

Sheathing Type ²	Span Rating or Grade	Minimum Thickness (in.)	Strength Axis ⁴ Applied Perpendicular to Supports Rafter/Truss Spacing (in.)					
			12	16	19.2	24	32	48
				Nom	ninal Uniform	n Loads (ps	if)	
Wood Structural Panels (Sheathing Grades, C-C, C-D, C-C Plugged, OSB)	24/0 24/16 32/16 40/20 48/24	3/8 7/16 15/32 19/32 23/32	425 540 625 955 1160	240 305 355 595 805	165 210 245 415 560	105 135 155 265 360	- 90 150 200	- - - 90
Wood Structural Panels (Single Floor Grades, Underlayment, C-C Plugged)	16 o.c. 20 o.c. 24 o.c. 32 o.c. 48 o.c.	19/32 19/32 23/32 7/8 1-1/8	705 815 1085 1395 1790	395 455 610 830 1295	275 320 425 575 1060	175 205 270 370 680	100 115 150 205 380	- - 90 170

max spacing	=2.75*12	in	
nominal uniform load for 32/16	=90/1.6	psf	< omega=1.6

C-1 Plywood Results

NDS SDPWS Table 4.2C Nominal Unit Shear Capacities for Wood Frame	-Diaphragms			
	Lateral load	51	psf	< D+0.45Wx+0.75S
	Lateral Load	51	plf	ОК
Sheathing and Single-Floor grade, 6d nail size, 5/16 in pan- in face	el thickness, 2	210	plf	< omega=2

Use: 5/16" plywood with 6" nail spacing

Table 4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4}

								Α				В
		Minimum	Minimum	Minimum Nominal Width	6 ir	ı. Nail Sp an	SE pacing a d suppo	EISMIC t diaphra rting me	gm bour mbers	ndaries	6 in. N diaphra and supp	WIND all Spacing at gm boundaries porting members
Sheathing Grade	Common Nail Size	Fastener Penetration in Framing	Nominal Panel Thickness	of Nailed Face at Supported Edges and Boundaries		Case 1			ases 2,3,	4,5,6	Case 1	Cases 2,3,4,5,6
		(in.)	(in.)	(in.)	v. (plf)	(kip:	3, s/in.)	v. (plf)	(kij	G, os/in.)	v_ (plf)	v (plf)
						OSB	PLY		OSB	PLY		
	6d	1-1/4	5/16	2 3	330 370	9.0 7.0	7.0 6.0	250 280	6.0 4.5	4.5 4.0	460 520	350 390
Structural I	8d	1-3/8	3/8	2 3	480 530	8.5 7.5	7.0 6.0	360 400	6.0 5.0	4.5 4.0	670 740	505 560
	10d	1-1/2	15/32	2	570	14	10	430	9.5	7.0	800	600
				3	640	12	9.0	480	8.0	6.0	895	670
		d 1-1/4	5/16	2	300	9.0	6.5	220	6.0	4.0	420	310
	6d			3	340	7.0	5.5	250	5.0	3.5	475	350
			3/8	2	330	7.5	5.5	250	5.0	4.0	460	350
				3	370	6.0	4.5	280	4.0	3.0	520	390
			3/8	2	430	9.0	6.5	320	6.0	4.5	600	450
				3	480	7.5	5.5	360	5.0	3.5	670	505
Sheathing and	84	1,3/9	7/16	2	460	8.5	6.0	340	5.5	4.0	645	475
Single-Floor	30	310		3	510	7.0	5.5	380	4.5	3.5	715	530
			15/32	2	480	7.5	5.5	360	5.0	4.0	670	505
				3	530	6.5	5.0	400	4.0	3.5	740	560
			15/32	2	510	15	9.0	380	10	6.0	715	530
	104	1-1/2	10/02	3	580	12	8.0	430	8.0	5.5	810	600
			19/32	2	570	13	8.5	430	8.5	5.5	800	600

 Normal unit shar capacities shall be adjusted in accordance with 4.2.1 to determine ASU anovable unit shear capacity and L2D1 Tactored unit resistance. For general construction requirements, see 4.2.6. For specific requirements, see 4.2.7.1 for word structural panel diaphragmas. See Appendix A for common null dimensions.
 For specific requirements, see 4.2.7.1 for word structural panel diaphragmas. See Appendix A for common null dimensions.
 For specific requirements, see 4.2.7.1 for word structural panel diaphragmas. See Appendix A for common null dimensions.
 For specific requirements, see 4.2.7.1 for word structural panel diaphragmas. See Appendix A for common null dimensions.
 For specific requirements, see 4.2.8.1

Table 3.2.2 Nominal Uniform Load Capacities (psf) for Roof Sheathing Resisting Out-of-Plane Wind Loads^{1,3}

Sheathing Type ²	Span Rating or Grade	Minimum Thickness (in.)	Strength Axis ⁴ Applied Perpendicular to Supports Rafter/Truss Spacing (in.)					
			12	16	19.2	24	32	48
			Nominal Uniform Loads (psf)					
Wood Structural Panels (Sheathing Grades, C-C, C-D, C-C Plugged, OSB)	24/0 24/16 32/16 40/20 48/24	3/8 7/16 15/32 19/32 23/32	425 540 625 955 1160	240 305 355 595 805	165 210 245 415 560	105 135 155 265 360	- 90 150 200	- - - 90
Wood Structural Panels (Single Floor Grades, Underlayment, C-C Plugged)	16 o.c. 20 o.c. 24 o.c. 32 o.c. 48 o.c.	19/32 19/32 23/32 7/8 1-1/8	705 815 1085 1395 1790	395 455 610 830 1295	275 320 425 575 1060	175 205 270 370 680	100 115 150 205 380	- - 90 170

max spacing	33	in	
nominal uniform load for 32/16	56.25	psf	< omega=1.6

Appendix D- Joists

D-1 Joists Bending Check Calculations

Bending Stress Fb:

Step 1 tributary width

12 in

Steps 2 & 3	57 lb	12 in	1 ft	=(57*(12/12))	lb	< distributed load along joist
	ft^2		12 in		ft	

Step 4	wL^2/8		
	w=	=F4	plf
	L=		19 ft
	Mmax=	=(D10*(D11^2))/8	lb-ft

Step 5	joist size	joist size			
	d		11.25 in		
	b		1.5 in	1.5 in	
	S	=(D16*(D15^2))/6	in3		
	S	=D17/1728	ft3		
	fb	=D12/D18	psf	< applied bending stress	
	fb	=D20/144	psi	< applied bending stress	

Step 6	Cd	1.15	5	
	Cm	1		
	Ct	1		
	CI	1		
	CF	1		
	Cfu	1		
	Cc	1		
	Cr	1.15	5	
	Fb	850) psi	< HF #2
	Fb	=D32*144	psf	
	F'b	=D23*D24*D25*D26*D27*D28*D29*D30*D33	psf	< allowable bending stress
	F'b	=D34/144	psi	< allowable bending stress

Step 7 =(D20/D34)*100 %	=IF(C37<100, "OK" <mark>, Use: 2x12 HF #2</mark>
-------------------------	--

D-2 Joists Bending Check Results

Bending Stress Fb:

Step 1

tributary width 12 in

Steps 2 & 3	57 lb	12 in	1 ft	57 lb	< distributed load along joist
	ft^2		12 in	ft	

Step 4	wL^2/8	
	w=	57 plf
	L=	19 ft
	Mmax=	2572.125 lb-ft

Step 5	joist size	2x12	
	d	11.25 in	
	b	1.5 in	
	S	31.640625 in3	
	S	0.01831054688 ft3	
	fb	140472.32 psf	< applied bending stress
	fb	975.5022 psi	< applied bending stress

Step 7	86.77880327	%	ок	Use: 2x12 HF #2
	F'b	1124.125	psi	< allowable bending stress
	F'b	161874	psf	< allowable bending stress
	Fb	122400	psf	
	Fb	850	psi	< HF #2
	Cr	1.15		
	Cc	1		
	Cfu	1		
	CF	1		
	CI	1		
	Ct	1		
	Cm	1		
Step 6	Cd	1.15		

D-3 Joists Shear Check Calculations

Shear Stress Fv:	KNOWN :			
	2x12			R = V
	b (in)		1.5	2
	d (in)		11.25	V_x
	b (ft)	=C3/12		
	d(ft)	=C4/12		M_{max} (at center) $=\frac{w\ell^2}{c}$
	w (lb/ft)	='Bending Check'!F4		8
	L (ft)		19	M_x $= \frac{w_x}{2}(\ell - x)$
				$\Delta_{\max} \text{ (at center)} \dots \dots \dots = \frac{5 \omega \ell^4}{384 \text{ EI}}$
				$\Delta_x \qquad \dots \qquad \dots \qquad \dots \qquad = \frac{wx}{24 Fl} (\ell^3 - 2\ell x^2 + x^3)$
	V	wL/2	1	
	V (lbs)	=(C7*C8)/2		
	Fv	3V/(2bd)		
	Fv (lb/ft^2)	=(3*C13)/(2*C5*C6)		
	Allowable Shear	F'v= Fv(a)*Cd*Cm*Ct*Ci		

Allowable Shear		F'v= Fv(a)*Co	I*Cm*Ct*Ci	
	Cd		1.15	snow load (most conservitive)
	Cm		1	moisture < 19% for extended periods
	Ct		1	t<100 degrees
	Ci		1	is it incised?
Fv allowable (psi)				150
Fv allowable (psf)		=C25*144		Hem-Fer

F'v (psf)	=C26*C20*C21*C22*C23	
Stressed (%)	=(C16/C28)*100	OK

D-4 Joists Shear Check Results

Shear Stress Fv:

KNOWN :

Fv (lb/ft^2)

F'v (psf)

2x12		
b (in)	1.5	$R = V \dots \dots \dots \dots \dots = \frac{w\ell}{2}$
d (in)	11.25	V_{-}
b (ft)	0.125	
d(ft)	0.9375	M_{max} (at center) = $\frac{w\ell^2}{c}$
w (lb/ft)	57	8
L (ft)	19	M_x
		$\Delta_{}$ (at center) = $\frac{5w}{2}$

6931.2

24840

V	wL/2	
V (lbs)		541.5
E.		·
Fv	3V/(2bd)	

$V_x \qquad \dots \qquad = w \left(\frac{\ell}{2} - x\right)$ $M_{\max} \text{ (at center)} \qquad \dots \qquad = \frac{w\ell^2}{8}$ $M_x \qquad \dots \qquad \dots \qquad = \frac{wx}{2}(\ell - x)$ $\Delta_{\max} \text{ (at center)} \qquad \dots \qquad \dots \qquad = \frac{5w\ell^4}{384 \text{ El}}$ $\Delta_x \qquad \dots \qquad \dots \qquad = \frac{wx}{24 \text{ El}}(\ell^3 - 2\ell x^2 + x^3)$	K = V
$M_{\max} \text{ (at center)} \dots \dots \dots = \frac{w\ell^2}{8}$ $M_x \dots \dots \dots \dots = \frac{wx}{2}(\ell - x)$ $\Delta_{\max} \text{ (at center)} \dots \dots \dots \dots = \frac{5w\ell^4}{384 El}$ $\Delta_x \dots \dots \dots \dots \dots \dots = \frac{wx}{24 El}(\ell^3 - 2\ell x^2 + x^3)$	V_x $w\left(\frac{\ell}{2}-x\right)$
$M_{x} \dots \dots \dots \dots \dots \dots \dots \dots = \frac{wx}{2}(\ell - x)$ $\Delta_{\max} \text{ (at center)} \dots \dots \dots \dots \dots \dots \dots = \frac{5w\ell^{4}}{384 El}$ $\Delta_{x} \dots \dots$	M_{\max} (at center) $=\frac{w\ell^2}{8}$
$\Delta_{\max} \text{ (at center)} \qquad \dots \qquad \dots \qquad = \frac{5w\ell^4}{384 El}$ $\Delta_x \qquad \dots \qquad \dots \qquad \dots \qquad = \frac{wx}{24 El} (\ell^3 - 2\ell x^2 + x^3)$	M_x $\frac{wx}{2}(\ell - x)$
$\Delta_x \dots \dots \dots \dots = \frac{\omega x}{24 \text{ EI}} (\ell^3 - 2\ell x^2 + x^3)$	$\Delta_{\max} \text{ (at center)} = \frac{5w\ell^4}{384 EI}$
	$\Delta_x \ldots \ldots \ldots = \frac{w_x}{24 EI} \left(\ell^3 - 2\ell x^2 + x^3\right)$

Allowable Shear	F'v= Fv(a)*Cd*Cm*Ct*Ci		
Cd	1.15	snow load (m	ost conservitive)
Cm	1	moisture < 19	% for extended periods
Ct	1	t<100 degrees	S
Ci	1	is it incised?	
Fv allowable (psi)		150	
Fv allowable (psf)		21600	Hem-Fer

Stressed (%) 27.90338164 OK D-5 Joists Deflection Check Calculations

Delfection in inches:

_(5 C2 (C3 ⁻⁴))/(364 C	Floor and Ceilings - L/360 = 0.4 inches Roof < 3:12 - L/240 = 0.6 inches Roof > 3:12 - L/180 = 0.8 inches
-(5 C2 (C3·4))/(364 C	Floor and Ceilings - L/360 = 0.4 inches Roof < 3:12 - L/240 = 0.6 inches
-(E*C2*(C244))/(284*C	The Deflections that are Permitted by the Code are:
=('Bending Check!D1c	Actual Deflect = 5 WL^4 / 384 EI = 0.22038 inches of Deflection Computed
- (Dending Check/ID10	E = 1190000 in ^ 4 (Modulus of Elasticity of Wood Selected)
='Bending Check'!D11'	I = 177.907 in * 4 (See Section on Moment of Inertia)
='Bending Check'!F4/1	Now we need to chech the Deflection:
	<pre>='Bending Check'!F4/1 ='Bending Check'!D11' 1300000 < NDS supplement =('Bending Check'!D16 =(5*C2*(C3^4))/(384*C)</pre>

D-6 Joists Deflection Check Results

Delfection in inches:

L/240	0.95	ок	
allowable defl	L/240		Roof > 3:12 - L/180 = 0.8 inches
	0.722071002		Floor and Ceilings - L/360 = 0.4 inches Roof < 3:12 - L/240 = 0.6 inches
deflection (in)	0 722371902		The Deflections that are Permitted by the Code are:
l (in3)	177.9785156		Aster D. Aster C. WILLAR (201 Fills & 20020) Station of D. Aster Communication
E (psi)	1300000	< NDS supplement	E = 1190000 in ^ 4 (Modulus of Elasticity of Wood Selected)
L (in)	228		I = 177.907 in * 4 (See Section on Moment of Inertia)
W (lb/in)	4.75		Now we need to chech the Deflection:

D-7 2x12 Joist Calculations

	allowable de	fl I/2	240
	L/240	=C31/240	=if(C35 <c38, "no="" "ok",="" good")<="" td=""></c38,>
Actual Dimensions of Lumber for	or 2x12		
b	0 1.5	in	=B42/12
c	11.25	in	=B43/12

			/0	-11 (02/ 1100, 0
	•			
Delfection in inches:	W (lb/in)	=80.08/12		
	L (in)	=19*12		
	E (psi)	1300000	< NDS supplement	
	l (in3)	=((D7*3)*(D6^3))/12		

deflection (in) =(5*C30*(C31^4))/(384*C32*C33)

=(D11/D25)*100	%	=IF(C27<100, "OK", "NO GOOD	') Use: (3) 2x12 HF #2
F'b	=D14*D15*D16*D17*D18*D	D19*D20*D21psf	< allowable bending stress
Fb	=D23*144	psf	
Fb		850 psi	
Cr		1.15	
Cc		1	
Cfu		1	
CF		1.3	
CI		1	
Ct		1	
Cm		1	
Cd		1.15	

1	Mmax=		2731.5 lb-ft	
	typical joist sizes		2x12	
	d		11.25 in	
	b		1.5 in	
	S	=(D7*(D6^2))/6	in3	
	S	=D8/1728	ft3	
	Fb	=D3/D9	psf	< applied bending stress

Bending Stress Fb:

V	wL/2		760.8 lb		
Fv	3V/2bd	=(3*C45)/(2*D42*D43)	lb/ft^2		
Cd	1.15	snow load			
Cm	1	moisture content less than 19	9%		
Ct	1	Flagstaff temperatures don't e	exceed 100 degrees		
Ci	1	not 100% sure but when in do	oubt choose 1		
allowable Fv	150	lb/in^2	=B53*144	lb/ft^2	Used Hem Fir - No. 2 Structural from Table 4A

F'v =D53*B48*B49*E lb/ft^2

=(C46/B55)*100 %	less than 100% = good	Use (3) 2x12 Hem Fir No. 2

D-8 2x12 Joist Results

Sending Stress Fb:	Mm	ax=		2731.5 lb-ft	
	typi	cal joist sizes		2x12	
	d			11.25 in	
	b			1.5 in	
	S		:	31.640625 in3	
	S		0.018	31054688 ft3	
	Fb			149176.32 psf	< applied bending stress
	Cd			1.15	
	Cm			1	
	Ct			1	
	CI			1	
	CF			1.3	
	Cfu			1	
	Cc			1	
	Cr			1.15	
	Fb			850 psi	
	Fb			122400 psf	
	F'b			210436.2 psf	< allowable bending stress
		70.8890	09608 %	ок	Use: (3) 2x12 HF #2
Delfection in inches:	W (lb/in)	6.673333333			
	L (in)	228			
	E (psi)	1300000	< NDS supplement		
	I (in3)	533.9355469			
	deflection (in)	0.3382897188			
	allowable defl	L/240			
	L/240	0.95	ок		
Actual Dimensions of Lum	per for 2x12				
Actual Dimensions of Luml	ber for 2x12 b 1.5 in		0.125	ft	

	V	wL/2	760	0.8 lb		
	Fv	3V/2bd	9738.2	24 lb/ft^2		
	Cd	1.15	snow load			
	Cm	1	moisture content less than 19%			
	Ct	1	Flagstaff temperatures don't exce	ed 100 degrees		
	Ci	1	not 100% sure but when in doubt	choose 1		
a	allowable Fv	150	lb/in^2	21600	lb/ft^2	Used Hem Fir - No. 2 Structural from Table 4A
		24840	16/6400			
	ΓV	24040	10/11-2			
		30.0	20.%	loss than 100% - good		Lise (3) 2x12 Hom Fir No. 2
		39.2	.0 /0	1655 than 100 % - 9000		Use (3) 2X12 Helli Fil NO. 2

D-9 Short Joist Check Calculations

Bending Stress Fb:

	St	ep 1	tributary width		1 ft				
							5740.5		
	St	eps 2 & 3	57 ID	=D2	π		=57^D5	ID	< distributed load along joist
			π.,2					π	
	_						_		
	St	ep 4	wL^2/8						
			w=	=F5	pl	f			1:
			L=	=4+(8/12)	ft				50
			Mmax=	=(D11*(D12^2))/8	lb	-ft			
									(4)
	St	ep 5	typical joist sizes		2x12				
			d		11.25 in	I			
			b		1.5 in	1			
			S	=(D17*(D16^2))/6	in	3			
			S	=D18/1728	ft3	3			
			Fb	=D13/D19	ps	sf	< applied bendi	ing stress	
	St	ep 6	Cd		1.15				
			Cm		1				
			Ct		1				
			0		1				
					1				
			Ctu		1				
			Cc		1				
			Cr		1.15				
			Fb		850 ps	Si			
			Fb	=D33*144	ns	sf			
			F'b	=D24*D25*D26*D27*D28*I	D29*D30*D3 ps	sf	< allowable ben	nding stress	
								<u> </u>	
	St	ер 7	=(D21/D35)*100	%	=1	IF(C37<100, "OK", "NO GOOD")	Use: 2x12 HF	<mark>#2</mark>	
ies:	W	(lb/in)	=F5/12						
	L ((in)	=D12*12						
	E	(psi)	1300000	< NDS supplement					
	l (i	in3)	=(D17*(D16^3))/12						
	de	flection (in)	=(5*C40*(C41^4))/(384*C4	42*C4					
	all	owable defl	L/240	=if(C45 <c49 "no<="" "ok"="" td=""><td>COOD")</td><td></td><td></td><td></td><td></td></c49>	COOD")				
	Ľ/,	270	-641/240	-11(043~040, UK , NU (3500)				
oflum	or for 2	v10							
	bei 101 2) b	1.5	in	=B52/12	ft				
	d	11.25	in	=B53/12	ft				
	V	wL/2	=(F5*D12)/2	lb					
	Fv	3V/2bd	=(3*C55)/(2*D52*D53)	lb/ft^2					
	Cd	1 15	snow load						
	u	1.10	anow loau						

	Mmax=	=(D11*(D12^2))/8	lb-ft	
Step 5	typical joist sizes		2x12	
	d		11.25 in	
	b		1.5 in	
	S	=(D17*(D16^2))/6	in3	
	S	=D18/1728	ft3	

Cm	1	moisture	content	less	than	19%
0			001100110	.000		.0,0

- Ct 1 Flagstaff temperatures don't exceed 100 degrees
- Ci 1 not 100% sure but when in doubt choose 1

allowable Fv 150 lb/in^2 =B63*144 lb/ff^2 Used Hem Fir - No. 2 Structural from Table 4A

F'v =D63*B58*B59*B6 lb/ft^2

=(C56/B65)*100	%	less than 100% = good	Use: 2x12 Hem Fir No. 2
end reactions	=(D11*D12)/2	lb	
SW end reactions	7.3125	lb	
	=sum(C69:C70)	lb	

D-10 Short Joist Check Results

Bending Stress Fb:

	Step 1	tributary width	1 ft		
	Steps 2 & 3	57 lb	1 ft	57.0 lb	< distributed load along joist
		ft^2		ft	
	Step 4	wL^2/8			
			57 0		
		w=	57.0 pii		I
		L=	4.000000007 IL		
		Mmax=	155.1666667 ID-π		
	Step 5	typical ioist sizes	2x12		
		d	11.25 in		
		b	1.5 in		
		S	31.640625 in3		
		S	0.01831054688 ft3		
		-			
		Fb	8474,168889 nsf	< applied bending stress	
	L		2		-
					\bigcup
	Step 6	Cd	1.15		
		Cm	1		
		Ct	1		
		CI	1		
		CF	1		
		Cfu	1		
		Cc	1		
		Cr	1.15		
		Fb	850 nsi		
		Fb	122400 psf		
		F'b	161874 psf	< allowable bending stress	
	Stop 7	E 22E040449	0/		
		5.235040148	70 OK		
Manting in in the sec	\A/ /lb/:>	4.75			_
errection in inches:	vv (ID/IN)	4.75			
	L (III)	00			
	E (psi)	1300000	< Supplement		
	i (in3)	177.9785156			
	deflection (in)	0.002628896965			
	allowable defl	L/240			
	L (in) E (psi) I (in3) deflection (in) allowable defl	56 1300000 177.9785156 0.002628896965 L/240	< NDS supplement		

	L/240	0.23333333333	ОК		
Actual Dimensions of Lumber for	or 2x12				
b	1.5	in	0.125	ft	
d	11.25	in	0.9375	ft	
v	/ wL/2	133	3 lb		
Fv	3V/2bd	1702.40	0 lb/ft^2		
Cd	1.15	snow load			
Cm	ı 1	moisture content I	ess than 19%		
C	t 1	Flagstaff temperat	tures don't excee	ed 100 degrees	
C	i 1	not 100% sure but	t when in doubt o	choose 1	
allowable Fv	150	lb/in^2	21600	lb/ft^2	Used Hem Fir - No. 2 Structural from Table 4A
F'v	24840	lb/ft^2			
	6.85	%	less than 100%	% = good	Use: 2x12 Hem Fir No. 2
	end reactions	133	lb		
	SW end reactions	7 3125	lb		
		140 3125	lb		

D-11 Short Joist #2 Check Calculations

Steps

s 2 & 3	='Short Joist Check'!C71		=C5/D6	lb	< distributed load along joist
		1 ft		ft	

Stop E	typical idiat dizas		2~12	
	Mmax=	=(D11*(D12^2))/8	lb-ft	
	L=	=3+(8/12)	ft	
	w=	=F5	plf	
Step 4	wL^2/8			

Step 5	typical joist sizes		2412	
	d		11.25 in	
	b		1.5 in	
	S	=(D17*(D16^2))/6	in3	
	S	=D18/1728	ft3	
	Fb	=D13/D19	psf	< applied bending stress

Step 6	Cd		1.15	
	Cm		1	
	Ct		1	
	CI		1	
	CF		1	
	Cfu		1	
	Cc		1	
	Cr		1.15	
	Fb		850 psi	
	Fb	=D33*144	psf	
	F'b	=D24*D25*D26*D27*D	28*D29*D30*[psf	< allowable bending stress

ft ft

1	Ctop 7	-/024/025)*400
	Step 7	=(D21/D35)~100

=IF(C37<100, "OK", "NO GOOD") Use: 2x12 HF #2

Delfection in inches:

W (lb/in) L (in)	=F5/12 =D12*12	
E (psi) I (in3)	1300000 =(D17*(D16^3))/12	< NDS supplement
deflection (in)	=(5*C40*(C41^4))/(384*C4	:

allowable defl L/240	1/240	-041/240	-if(C45 <c48< th=""></c48<>
	allowable defl	L/240	

anomable aon	EIE 10	
L/240	=C41/240	=if(C45 <c48, "no="" "ok",="" good")<="" th=""></c48,>

%

Actual Dimensions o	f Lumber for 2>	(12		
	b	1.5	in	=B52/12
	d	11.25	in	=B53/12
	v	wL/2	=(F5*D12)/2	lb
	Fv	3V/2bd	=(3*C55)/(2*D52*D53)	lb/ft^2

Cd	1.15	snow load	
-			

- Cm 1 moisture content less than 19% 1
- Ct Flagstaff temperatures don't exceed 100 degrees Ci 1
 - not 100% sure but when in doubt choose 1

allowable Fv	150	lb/in^2	=B63*144	lb/ft^2	Used Hem Fir - No. 2 S	tructural from Table 4A
F'v	=D63*B58*B59*B60	* lb/ft^2				
	=(C56/B65)*100	%	less than 100% = good			Use: 2x12 Hem Fir No. 2
	end reactions	=(F5*D12)/2	lb			
	SW end reactions	6.71	lb			
		=sum(C69:C70)	lb	at 4'-8" and 12'-5" on (3) 2x12 joists		
D-12 Short Joist #2 Check Results

unding Streep The	Ctana 2.8		140.04	105			140.2 lb	منافعته محمام الممار المغنيات المتعام
mung stress FD:	Steps 2 8		140.31	120	4	A	140.3 ID	< distributed load along joist
					1	n	n.	
	Sten 4		wl ^2/8					
	Ctop :		12 2.0					
			w=		140.3	olf		1:
			1=		3 666666667	ft		
			_ Mmax=		235 8029514	lb-ft		
			windx-		200.0020014			(4)
	Step 5		typical joist sizes		2x12			\neg
			d		11.25	in		
			b		1.5	in		
			s		31.640625	in3		
			s		0.01831054688	ft3		0
			0					
			Fb		12877 98519	nsf	< applied bending stress	
	L				12011.00010	201		
	Step 6		Cd		1 15			
	Otep 0		Cm		1.15			
			Ct		1			
			CI		1			
			CE		1			
			Cfu		1			
			Cc		1			
			Cr		1 15			
			CI		1.15			
			Eb		850	nei		
			FD		122400	psi		
			FU F'b		122400	psi	< allowable banding atraas	
			гIJ		1010/4	psi	< allowable bending stress	
	Stop 7		7 055564	100 0/		OK		
	Step 7		7.355501	125 /8		OK	036. 2812 111 #2	
elfection in inches:	W (lb/in)		11.69270833					
	L (in)		44					
	E (psi)		1300000	< NDS supplement	t			
	I (in3)		177.9785156					
	deflection	n (in)	0.002466344108					
	allowable	defl	L/240					
	L/240		0.1833333333	ок				
	•							
tual Dimensions of Lum	per for 2x12							
tual Dimensions of Lum	ber for 2x12 b 1	1.5	in	0.125	5	ft		
ual Dimensions of Luml	ber for 2x12 b 1 d 11	l.5 l.25	in in	0.12	5	ft ft		
tual Dimensions of Lum	ber for 2x12 b 1 d 11	I.5 I.25	in in	0.12 0.937	5	ft ft		
ual Dimensions of Luml	ber for 2x12 b 1 d 11 V w	1.5 1.25 rL/2	in in 257.23958	0.124 0.937 833 lb	5	ft ft		
al Dimensions of Luml	ber for 2x12 b 1 d 11 V w Fv 3V	1.5 1.25 IL/2 //2bd	in in 257.23958 3292.	0.12/ 0.937 833 lb 2.67 lb/ft^2	5	ft ft		
al Dimensions of Lum	ber for 2x12 b 1 d 11 V w Fv 3V	1.5 1.25 L/2 /2bd	in in 257.23958 3292.	0.12: 0.937 833 lb 2.67 lb/ft^2	5	ft ft		
al Dimensions of Lumi	Der for 2x12 b 1 d 11 V w Fv 3V Cd 1	1.5 1.25 1/2 /2bd	in in 257.23958 3292. snow load	0.124 0.937 833 lb 2.67 lb/ft^2	5	ft ft		
al Dimensions of Lumi	ber for 2x12 b 1 d 11 V w Fv 3V Cd 1 Cm	1.5 1.25 1L/2 /2bd .15 1	in in 257.23958 3292. snow load moisture content less th	0.12 0.937 833 lb 2.67 lb/ft^2 han 19%	5	ft		
tual Dimensions of Lum	ber for 2x12 b 1 d 11 V w Fv 3V Cd 1 Cm Ct	1.5 1.25 1L/2 1/2bd .15 1 1	in 257.23958 3292. snow load moisture content less th Flagstaff temperatures of	0.12 0.937 833 lb 2.67 lb/ft^2 han 19% don't exceed 100 degree	5 5 5	ft ft		

allowable Fv	150	lb/in^2	21600	lb/ft^2	Used Hem Fir - No. 2	Structural from Table 4A
F'v	24840	lb/ft^2				
	1	3.26 %	less than 100% = good			Use: 2x12 Hem Fir No. 2
	end reactions SW end reactior	257.2395833 ns 6.71 263.9495833	lb lb	at 4'-8" and 12'-5" on (3) 2x12 joists		

Appendix E- Beams

E-1 Beam Design Calculations

	Step 5			12	
		b		7.5 in	
		d	1	1.5 in	
		S	=(D20*(D21^2))/6	in3	
		S	=D22/1728	ft3	
		Fb	=D17/D23	psf	< applied bending stress
			=D25/144	psi	
	Step 6	Cd	1.15		
		Cm	1		
		Ct	1		
		CI	1	< lesser of CL and CV used (do no	at use simultaneously)
		CV	=((21/12)^(1/20))*((12/D21)^(1/20))*((5.125/D20)^(1/20))	See lesser of CL and CV used (do not see the second sec	at use simultaneously)
		Cfu	-((21/12) (1/20)) ((12/021) (1/20)) ((3.123/020) (1/20))		(use simulatiously)
		610 Co	1		
		00	1		
		U	1		
		Fb	875	psi	< DF #2 (beams and stringers)
	1	Fb	=D37*144	psf	
					< allowable bending stress
		F'b	=D28"D29"D30"D31"D33"D34"D35"D38	psi	
		F'b	=D28 ⁻ D29 ⁻ D30 ⁻ D31 ⁻ D33 ⁻ D34 ⁻ D35 ⁻ D38 =D39/144	psi	
	Step 7	F'b =(D25/D39)*100	=D28 ⁻¹ /22 ⁻¹ /30 ⁻¹ /31 ⁻¹ /33 ⁻¹ /33 ⁻¹ /33 ⁻¹ /38 ⁻¹ =D39/144	psi psi =IF(C41<100, "OK", "NO GOOD")	Use: 8x12 DF #2
Stress Fv:	Step 7	F'b =(D25/D39)*100 3.4.2	=D39/144 %	psi psi ≕F(C41<100, "OK", "NO GOOD")	Use: 8x12 DF #2
Stress Fv:	Step 7 Shear	F'b =(D25/D39)*100 3.4.2	=D39/144 %	psi psi ==F(C41<100, "OK", "NO GOOD") ft	Use: 8x12 DF #2
Stress Fv:	Step 7 Shear 0 1 0 1	F'b =(D25/D39)*100 3.4.2 in in	=D28 ⁻ U28 ⁻ D39 ⁻ U33 ⁻ D33 ⁻ D38 ⁻ =D39/144 % =B46/12 =B47/12	psi psi ==F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d	Step 7 Shear 0 = D20 d = D21	F'b =(D25/D39)*100 3.4.2 in in	=D39/144 % =B46/12 =B47/12	psi psi = F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V	Step 7 Shear 0 = D20 d = D21 // wL/2	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2	=D39/144 % =B46/12 =B47/12 b	psi psi ==F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv	Step 7 Shear 0 = D20 d = D21 / wL/2 3V/2bd	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47)	=D39/144 % =B46/12 =B47/12 bb lb/ft*2	psi psi = F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv Cd	Step 7 Shear a = D20 d = D21 v wL/2 v 3V/2bd d 1.15	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47)	=D39/144 % =B46/12 =B47/12 Ib Ib/ft*2	psi psi = F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv Cd Cm	Step 7 Shear 0 = D20 d = D21 / wL/2 3V/2bd d = 1.15 1	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47)	=D39/144 % =B46/12 =B47/12 lb lb/ft*2	psi psi = F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv Cd Cm Ct	Step 7 Shear 0 = D20 d = D21 // wL/2 // 3V/2bd d = 1.15 1 t 1	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47)	=D39/144 % =B46/12 =B47/12 b lb/ft*2	psi psi =IF(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv Cd Cm Ci Ci	Step 7 Shear a = D20 d = D21 v wL/2 a = J21 v st/2bd d = 1.15 n 1 t 1 i 1	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47)	=D39/144 % =B46/12 =B47/12 Ib Ib/ft*2	psi psi = F(C41<100, "OK", "NO GOOD") ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv Cd Cm Ct Ci allowable Fv	Step 7 Shear 0 =D20 d =D21 / wL/2 / 3V/2bd d 1.15 1 1 i 1 i 1 i 1 i 265	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47) Ib/in*2	=D39/144 % =B46/12 =B47/12 lb lb/ft^2 =B57*144	psi psi = F(C41<100, "OK", "NO GOOD") ft ft ft	Use: 8x12 DF #2
Stress Fv: d V Fv Cd Cm Ct Ct d allowable Fv	Step 7 Shear a = D20 d = D21 / wL/2 / 3V/2bd d 1.15 1 1 t 1 i 1 y 265 y = D57*B53*B53*B54*B55	F'b =(D25/D39)*100 3.4.2 in in =(D15*D16)/2 =(3*C49)/(2*D46*D47) lb/in^2 lb/ft^2	=D39/144 % =B46/12 =B47/12 lb lb/ft*2 =B57*144	psi psi = F(C41<100, "OK", "NO GOOD") ft ft ft	Use: 8x12 DF #2

Bending	Stress Fb:
---------	------------

Steps 2 & 3

Step 4

=F3

wL^2/8

Mmax=

w= L=

Step 1	tributary width	=18/2	ft

lb

=C9

=(D15*(D16^2))/8

Hem Fir Density (pcf)	31.2	Joist Volume (ft3)	=(1.5/12)*(11.25/12)*B2	weight of joist (lb)	=B1*D1	rxn at joist support from weight (lb)	=F1/2
joist length (ft)	19	joist spacing (ft)	1				
max roof load on joist (psf)	=57*D2	rxn at joist support from roof load (lb)	=(B3*D2*B2)/2	rxn at joist support (lb)	=D3+H1		
						-	

=C9/D2

1 ft

plf

lb-ft

8 ft

lb

ft

<-- distributed load along beam

W (lb/in)	=D15/12	
L (in)	=D16*12	
E (psi)	=1.8*(10^6)	< NDS supplement
l (in3)	=(B46*(B47^3))/12	
deflection (in)	=(5*C65*(C66^4))/(384*C67*C68)	
allowable defl	L/240	
L/240	=C66/240	=if(C70 <c73, "no="" "ok",="" good")<="" td=""></c73,>

E-2 Beam Design Results

Hem Fir Density (pcf)		31.2	2 Joist Volume (ft3)				2.2265625	weight of joist (lb)		69.46875 rxn at j	joist support from weight (Ib) 34.734375	
joist length (ft)		19	joist spacing (ft)				1						
max roof load on joist (psf)		57	rxn at joist support from	roof load (lb)			541.5	rxn at joist support (lb)		576.234375			
Bending Stress Fb:													
	Step 1		tributary width				9	ft					
	Steps 2 &	3	576.2		lb					576.234375 lb		< distributed loa	d along beam
								1 ft		ft			
	Step 4		wL^2/8										
			w=				576.2	plf					
			L=				8	ft					
			Mmax=				4609.875	lb-ft					
	Step 5		size				8x12						
			b				7.5	in					
			d				11.5	in					
			S				165.3125	in3					
			S				0.09566695602	ft3					
			Fb				48186.70095	psf	< appl	ied bending stress			
							334.6298677	psi					
	Step 6		Cd			1.15							
			Cm			1							
			Ct			1							
			CL			1		< lesser of CL and CV use	ed (do not use simu	ultaneously)			
			CV			1.011		< lesser of CL and CV use	ed (do not use simu	ultaneously)			
			Cfu			1							
			Cc			1							
			Ci			1							
			Fb			875		psi	< DF #	#2 (beams and stringe	ers)		
			Fb			126000		psf					
			F'b			144900		psf	< allov	vable bending stress			
						1006.25		psi					
	Step 7			33.25514213	%			ок	Use: 8	3x12 DF #2			
Shear Stress Fv:	Shear		3.4.2										
t	2	7.5	in			0.625		ft					
c	t	11.5	in			0.9583		ft					
V	/	wL/2		2304.9375	lb								
Fv	/	3V/2bd		5772.37	lb/ft^2								
Co	t	1.15											
Cm	n	1											
C	t	1											
C	i	1											
allowable Fv	v	265	lb/in^2			38160		lb/ft^2					
F'\	v	43884	lb/ft^2										

13.15 %

Use 8x12 DF #2

L/240	0.4	ок	
allowable defl	L/240		
deflection (in)	0.03103813265		
I (in3)	950.546875		
E (psi)	1800000	< NDS supplement	
L (in)	96		
W (lb/in)	48.01953125		

Appendix F- Columns

F-1 End Column Design Calculations

Reaction at beam support from loading	=((577.00625*12)/2)	lb	< 2 times the loading of the	beams									
Axial load acting down onto column	=B1+(H2*2)	lb	> add beam self weight	DF #2 density (pcf)	33.1	rxn from SW (lb) =(F2	2*F7)/2						
Lateral wind load	16	psf		Beam size:		Column size:							
Tributary width	12	ft		width (in)	7.5	width (in)	7.5						
Lateral wind load acting on column	=B3*B4	plf		length (in)	11.5	length (in)	7.5						
Bearing Check:				beam length (ft)	8	height (ft)	10						
Check 8x8				beam volume (ft^3)	=(F4/12)*(F5/12)*	F							
fc=P/A													
P	=B2	lb					Table G1	Buckling Length Coeffici	ents, K				
A	=H4*H5	in2			CP:					<u> </u>		Τ.	
fc	=B9/B10	psi			FCE	=(0.822*G14)/((G1{			4	8		Ť	44
					F*c	=B13*B14*B15*B1(psi				14			
Fc (axially loaded)	1650	psi	< DF/DF 24F-V4		С	0.9		Buckling modes					1 i 1
CD	1.15				E'min	='Middle ASCE 7-1 psi			N.		11		
CM	1				le	=G17*G18 in			1		1	l k	
Ct	: 1				d	=H4 in			1	'	1	7	•
CF	1				Ke	2.4		Theoretical K_e value	0.5	0.7	1.0	1.0	2.0
Ci	1				1	=H6*12 in		Recommended design K _e when ideal conditions approximated	0.65	0.80	1.2	1.0	2.10
CP	=G20-((G21-G22)^(1/2	2							-	Rota	tion fixe	ed, transla	tion fixed
					1st term	n =(1+(G11/G12))/(2*		End condition code	7	Rota	tion free.	e, translat	on fixed
F'c	=B13*B14*B15*B16*E	3 psi			2nd term	1 =((1+(G11/G12))/(2			-	Rota	tion fixe	ed, transla	tion free
			_		3rd term	=(G11/G12)/G13		L	<u> </u>	Hota	tion free	e, translat	on tree
fc/F'c (%)	=(B11/B21)*100	=IF(B23>100, "NO GOOD", "OK")											

ź 1.0 1.0 2.0 2.0 1.2 1.0 2.10

2.4

Shear Check:

Stressed (%)	=(C40/C51)*100		ОК
F'v (psf)	=C49*C43*C44*C	C45*C46	
· · allowable (p31)			
Ev allowable (nsf)	=C48*144		< DE/DE 24E-V4
Fy allowable (psi)		230	
C	Ci	1	is it incised?
C	t	1	t<100 degrees
Cr	n	1	moisture < 19% for extended period
C	d	1.15	snow load (most conservitive)
Allowable Shear	F'v= Fv(a)*Cd*Cn	n*Ct*Ci	
1 4 (10/11 2)	1-13 031 pt2 031	002/	
Ev (lb/ft^2)	=(3*C37)/(2*C31*	(C32)	
Fv	3\//(2bd)		
V (Ibs)	=C33		
V	V=P		
L (ft)	=H6		
P (lb)	=B69		
d(ft)	=C30/12		
b (ft)	=C29/12		
d (in)	=H5		
b (in)	=H4		
8x8			
KNOWN :			

Deflection Check:

P (lb) =C37 L (in) =H6*12 I (in3) =(C29*(C30^3))/12 E (psi) =1.6*(10^6)

deflection (in) =(B57*(B58^3))/(3*B60

L/240 =B58/240 =if(B62<B64, "OK", "NO GOOD")

F-2 End Column Design Results

Reaction at beam support from loading	3462.0375	lb	< 2 times the loading of the	e beams							
Axial load acting down onto column	3620.641667	lb	> add beam self weight	DF #2 density (pcf)	33.1	rxn from SW (lb)	79.30208	3333			
Lateral wind load	16	psf		Beam size:		Column size:					
Tributary width	12	ft		width (in)	7.5	width (in)		7.5			
Lateral wind load acting on column	192	plf		length (in)	11.5	length (in)		7.5			
Bearing Check:			_	beam length (ft)	8	height (ft)		10			
Check 8x8				beam volume (ft^3)	4.8						
fc=P/A											
Р	3620.641667	lb						Table G1	Buckling Length Coef	ficients	s, K _e
А	56.25	in2			CP:						_
fc	64.36696296	psi			FCE	473.836263					4
					F*c	805	psi				A
Fc (axially loaded)	700	psi			С	0.9			Buckling modes		
CD	1.15				E'min	850000	psi				
CM	1				le	288	in			,	1
Ct	1				d	7.5	in				Ŧ
CF	1				Ke	2.4			Theoretical K_e value	c	1.5
Ci	1				I	120	in		Recommended design when ideal condition		0.65
CP	0.5291								approximated	-	
					1st term	0.8825647088			End condition code		÷.
F'c	425.9655195	psi			2nd term	0.7789204652					÷.
					3rd term	0.6540183064					Ŷ
fc/F'c (%)	15.11083879	ок									

44

0.80 1.2 1.0

Rotation fixed, translation fixed Rotation free, translation fixed Rotation fixed, translation free Rotation free, translation free

2 0.5 0.7 1.0 1.0 2.0 2.0

> 2.10 2.4

8

÷....

Shear Check:

KNOWN :		
8x8		
b (in)	7.5	
d (in)	7.5	
b (ft)	0.625	
d(ft)	0.625	
P (lb)	204	
L (ft)	10	
v	V=P	
V (lbs)	204	
Fv	3V/(2bd)	1
Fy (lb/ft^2)	783.36	
		1
Allowable Shear	F'v= Fv(a)*Cd*Cm*Ct*Ci	
Cd	1.15	snow load (most conservitive)
Cm	1	moisture < 19% for extended period
Ct	1	t<100 degrees
Ci	1	is it incised?
Fv allowable (psi)	230	
Fv allowable (psf)	33120	< DF/DF 24F-V4
F'v (psf)	38088	

L (in) I (in3) E (psi)	120 263.671875 1600000	
deflection (in)	0.278528	
L/240	0.5	ОК

Bending Check #1:			
Lateral load at top of column	204	lb	< D+0.45Wx+0.75S
Max moment (P*L)	2040	lb-ft	
Column size	8x8		
b	7.5	in	
- d	7.5	in	
b	0.625	ft	
- d	0.625	ft	
s	70.3125	in3	
S	0.04069010417	ft3	
fb	50135.04	nef	
fb	348.16	psi	
Cd	1.15		
Cm	1		
Ct	1		
CI	1		
CF	1		
Cfu	1		
Cc	1		
Cr	1		
Fb	1450	psi	< DF/DF 24F-V4
F'b	1667.5	psi	
fb/F'b (%)	20.87916042	ок	
Bearing Check: 3.10 of NDS			
Axial load on column	3620.642	lb	
Bearing area	56.25	ın2	
Applied load	64.367	psi	
E*c (nsi)	805	OK	

F-3 Middle Column Design Calculations

fc/F'c (%) =(B11/B21)*100	=IF(B23>100, "NO GOOD", "OK")					
					3rd term	=(G11/G12)/G13	
F	=B13*B14*B15*B16*B17*B18*B19	9 psi			2nd term	=((1+(G11/G12))/(2
					1st term	=(1+(G11/G12))/(2	2*
CF	P =G20-((G21-G22)^(1/2))						
C	i 1				I	=H6*12	in
CF	- 1				Ke	2.4	
С	t 1				d	=H4	in
CM	1 1				le	=G17*G18	in
CE	0 1.15				E'min	='Middle ASCE 7-	1 psi
Fc (axially loaded) 1650	psi	< DF/DF 24F-V4		с	0.9	
					F*c	=B13*B14*B15*B	16 psi
fo	c =B9/B10	psi			FCE	=(0.822*G14)/((G	15
Ā	A =H4*H5	in2			CP:		
F	° =B2	lb					
fc=P/A	_				(14,12) (10,12)		
Check 8x8	_			beam volume (ff^3)	=(F4/12)*(F5/12)*		10
Bearing Check				beam length (ft)	6	beight (ft)	1.5
				width (in)	7.3	longth (in)	7.5
				Beam size:		Column size:	
Axial load acting down onto column	=B1+(H2*2)	lb	> add beam self weight	DF #2 density (pcf)	33.1	rxn from SW (lb)	=(F2*F7)/2
Reaction at beam support from loading	=((577.00625*12)/2)*2	lb	< 2 times the loading of th	e beams		1	1

Shear Check:

8x8			
D (IN)		=H4	
d (in)		=H5	
b (ft)		=C29/12	
d(ft)		=C30/12	
P (lb)		=B69	
L (ft)		=H6	
V		V=P	
V (lbs)		=C33	
-			
Fv		3V/(2bd)	
Fv (lb/ft^2)		=(3*C37)/(2*C31*C32)	
Allowable Shear		F'v= Fv(a)*Cd*Cm*Ct*Ci	
	Cd	1.15	snow load (most conservitive)
	Cm	1	moisture < 19% for extended periods
	Ct	1	t<100 degrees
	Ci	1	is it incised?
Fv allowable (psi)		230	
Fv allowable (psf)		=C48*144	< DF/DF 24F-V4
F'v (psf)		=C49*C43*C44*C45*C46	
Stressed (%)		-//240//2643*400	

Lateral load at top of column	1 =51"8"1		D	< D+0.45VVX+0.755
Max moment (P*L) =B69*H6		lb-ft	
Column size	2	8x8		
	- - =H4	0.00	in	
			in	
L) =B73/12		11	
(1 =B/4/12		π	
5	5 =(B73*(B74^2))/6		in3	
S	6 =(B75*(B76^2))/6		ft3	
ft	o =B70/B78		psf	
ft	o =B80/144		psi	
Co	t	1.15		
Cm	ı	1		
С	t	1		
С	il	1		
CF	:	1		
Cfu	L	1		
Co	0	1		
С	r	1		
Ft	0	1450	psi	< DF/DF 24F-V4
F't	=B91*B90*B89*B8	3*B87*B86*B85*B84*B83	nsi	
1.	20. 200 200 200	200 200 200 D04 D00	P0.	

fb/F'b (%) =(B81/B92)*100	=if(B94>100, "NO GOOD", "OK")
Bearing Check: 3.10 of NDS		
Axial load on colur	mn =B9	lb
Bearing ar	rea =H4*H5	in2
Applied lo	ad =B97/B98	psi
F*c (p	si) =G12	=if(B98 <b101, "no="" "ok",="" good")<="" td=""></b101,>

F-4 Middle Column Design Results

Reaction at beam support from loading	6924 075	lb	< 2 times the loading of the	beams			
Axial load acting down onto column	7043 028125	lb	> add beam self weight	DF #2 density (ncf)	33.1	rxn from SW (lb)	59 4765625
, sha load doung donn onto colainn	101010120120	15		Beam size:		Column size:	00.1100020
				Dealin Size.			
				width (in)	7.5	width (in)	7.5
				length (in)	11.5	length (in)	7.5
Bearing Check:				beam length (ft)	6	height (ft)	10
Check 8x8				beam volume (ft^3)	3.6	;	
fc=P/A							
Р	7043.028125	lb					
А	56.25	in2			CP:		
fc	125.2093889	psi			FCE	473.836263	
					F*c	805	psi
Fc (axially loaded)	700	psi			с	0.9	
CD	1.15				E'min	850000	psi
CM	1				le	288	in
Ct	1				d	7.5	in
CF	1				Ke	2.4	
Ci	1				I	120	in
CP	0.5291						
					1st term	0.8825647088	
F'c	425.9655195	psi			2nd term	0.7789204652	
					3rd term	0.6540183064	
fc/F'c (%)	29.3942545	ОК					

Shear Check:

KNOWN :	
8x8	
b (in)	7.5
d (in)	7.5
b (ft)	0.625
d(ft)	0.625
P (lb)	128
L (ft)	10

V	V=P
V (lbs)	128

1 1	3V/(2D0)
Fv (lb/ft^2)	491.52

Allowable Shear	F'	'v= Fv(a)*Cd*Cm*Ct*Ci	
	Cd	1.15	snow load (most conservitive)
	Cm	1	moisture < 19% for extended periods
	Ct	1	t<100 degrees
	Ci	1	is it incised?

Stressed (%)	1.745950554	ОК
F'v (psf)	28152	
Fv allowable (psf)	24480	_
Fv allowable (psi)	170	

Deflection Check:						
P (lb)	128					$\mathbf{R} = \mathbf{V} \dots \dots = P$
L (in)	120					M (at fived end) - DI
(in3)	263.671875			FBD		^{mmax} (at fixed end)=PL
E (psi)	1300000				-x- R	M_r
- (P)						
deflection (in)	0.2150925128			SFD		A (at free and)
						$\Delta_{\max}(at nee end) \dots - \frac{3EI}{3EI}$
L/240	0.5	ОК				p
					Mmar	$\Delta_{\rm x} \dots \dots \dots = \frac{1}{6{\rm El}} (2{\rm L}^3 - 3{\rm L}^2{\rm x} + {\rm x}^3)$
				BMD		
Bending Check #1:						
Lateral load at top of column	128	lb	< D+0.6	Wx		
Max moment (P*L)	1280	lb-ft				
Column size	8x8					
b	7.5	in				
d	7.5	in				
b	0.625	ft				
d	0.625	ft				
S	70.3125	in3				
S	0.04069010417	ft3				
fb	31457.28	psf				
fb	218.4533333	psi				
Cd	1.15					
Cm	1					
Ct	1					
Cl	1					
CF	1					
Ctu	1					
Cc	1					
Cr	1					
	/50	psi				
F'b	862.5	psi				
fb/F'b (%)	25.32792271	ОК				
Bearing Check: 3.10 of NDS						
Axial load on column	7043.028	lb				
Bearing area	56.25	in2				
Applied load	125.209	psi				
P.P		r -				
F*c (psi)	805	ОК				

F-5 End Column ASCE Check Calculations

In a cantilevered column system, stability of mass at the top is provided by one or more columns with base fixity acting as a single-degree-of-freedom system.

Cantilever column systems are essentially a special class of moment-resisting frame, except that they do not possess the redundancy and overstrength that most moment-resisting frames derive from sequential formation of yield or plastic hinges. Where a typical moment-resisting frame must form multiple plastic hinges in members to develop a yield mechanism, a cantilever column system develops hinges only at the base of the columns to form a mechanism. As a result, their overstrength is limited to that provided by material overstrength and by design conservatism.

It is permitted to construct cantilever column structures using any of the systems that can be used to develop moment frames, including ordinary and special steel; ordinary, intermediate, and special concrete; and timber frames. The system limitations for cantilever column systems reflect the type of moment frame detailing provided but with a limit on structural height, h_n , of 35 ft (10.7 m).

The value of R for cantilever column systems is derived from moment-resisting frame values where R is divided by Ω_0 but is not taken as less than 1 or greater than 2 1/2. This range accounts for the lack of sequential yielding in such systems. C_d is taken as equal to R, recognizing that damping is quite low in these systems and inelastic displacement of these systems is not less

Bearing Check:			
Check 8x8			
fc=P/A			
P	=G21		lb
A	=G23*G24		in2
fc	=B26/B27		psi
Fc (axially loaded)	='Middle Column C	alcs'IB13	psi
CD	1.	15	
CM		1	
Ct		1	
CF		1	
Ci		1	
CP	=G37-((G38-G39)^	(1/2))	

F'c =B30*B31*B32*B33*B34*B35*B36 psi

fc/F'c (%) =(B28/B38)*100 =IF(B40>16.5, "NO GOOD", "OK") 12.2.5.2 Cantilever Column Systems. Cantilever column systems are permitted as indicated in Table 12.2-1 and as follows. The required axial strength of individual cantilever column elements, considering only the load combinations that include seismic load effects, shall not exceed 15% of the available axial strength, including slenderness effects.

Foundation and other elements used to provide overturning resistance at the base of cantilever column elements shall be designed to resist the seismic load effects, including overstrength of Section 12.4.3.

D+0.525Ev+0.525Eh+0.75S		44.08	psf					
Joists	=(G18*1*19)/2		lb	SW	34.73	lb	plf on beam	=(G19+J19)/1
Beams	=(((M19*9)+J20)/2)		lb	SW	='Middle Column	lb		
Total load	=G20		lb					
b		75						
d		7.5						
u		7.5						
CP:								
FCE	=(0.822*G31)/((G32/G33)^	2)						
F*c	=B30*B31*B32*B33*B34*B	335	psi					
с	0.9							
E'min	=0.85*(10^6)		psi					
le	=G34*G35		in					
d	=G24		in					
Ke	2.4							
I	=10*12		in					
1st term	=(1+(G28/G29))/(2*G30)							
2nd term	=((1+(G28/G29))/(2*G30))/	2						

3rd term =(G28/G29)/G30

F-6 End Column ASCE Check Results

In a cantilevered column system, stability of mass at the top is provided by one or more columns with base fixity acting as a single-degree-of-freedom system.

Cantilever column systems are essentially a special class of moment-resisting frame, except that they do not possess the redundancy and overstrength that most moment-resisting frames derive from sequential formation of yield or plastic hinges. Where a typical moment-resisting frame must form multiple plastic hinges in members to develop a yield mechanism, a cantilever column system develops hinges only at the base of the columns to form a mechanism. As a result, their overstrength is limited to that provided by material overstrength and by design conservatism.

It is permitted to construct cantilever column structures using any of the systems that can be used to develop moment frames, including ordinary and special steel; ordinary, intermediate, and special concrete; and timber frames. The system limitations for cantilever column systems reflect the type of moment frame detailing provided but with a limit on structural height, h_n , of 35 ft (10.7 m).

The value of R for cantilever column systems is derived from moment-resisting frame values where R is divided by Ω_0 but is 12.2.5.2 Cantilever Column Systems. Cantilever column systems are permitted as indicated in Table 12.2-1 and as follows. The required axial strength of individual cantilever column elements, considering only the load combinations that include seismic load effects, shall not exceed 15% of the available axial strength, including slenderness effects.

Foundation and other elements used to provide overturning resistance at the base of cantilever column elements shall be designed to resist the seismic load effects, including overstrength of Section 12.4.3.

not taken as less than 1	or greater than 2	1/2 This range a	counts	D+0.525Ev+0.525E	h+0.75S	44.0	8 psf					
for the lack of sequentia	l yielding in suc	ch systems. C_d is t	taken as	Joists		418.7	6 lb	SW	34.73 lb	plf or	n beam	453.49
equal to R, recognizin	g that damping	g is quite low i	n these	Beams		2070.44328	1 lb	SW	59.4765625 lb			
systems and inelastic d	isplacement of	these systems is	not less	Total load		2070.44328	1 lb					
Bearing Check:				b		7.	5					
Check 8x8				d		7.	5					
fc=P/A												
Р	2070.443281	lb										
А	56.25	in2		CP:								
fc	36.80788056	psi		FCE		473.836263						
				F*c		805	psi					
Fc (axially loaded)	700	psi		С		0.9						
CD	1.15			E'min		850000	psi					
CM	1			le		288	in					
Ct	1			d		7.5	in					
CF	1			Ke		2.4						
Ci	1			I		120	in					
CP	0.5291											
					1st term	0.882564708	8					
F'c	425.9655195	psi			2nd term	0.778920465	2					
			-		3rd term	0.654018306	4					
fc/F'c (%)	8.641046955	OK										

F-7 Middle Column ASCE Check Calculations

In a cantilevered column system, stability of mass at the top is provided by one or more columns with base fixity acting as a single-degree-of-freedom system.

Cantilever column systems are essentially a special class of moment-resisting frame, except that they do not possess the redundancy and overstrength that most moment-resisting frames derive from sequential formation of yield or plastic hinges. Where a typical moment-resisting frame must form multiple plastic hinges in members to develop a yield mechanism, a cantilever column system develops hinges only at the base of the columns to form a mechanism. As a result, their overstrength is limited to that provided by material overstrength and by design conservatism.

It is permitted to construct cantilever column structures using any of the systems that can be used to develop moment frames, including ordinary and special steel; ordinary, intermediate, and special concrete; and timber frames. The system limitations for cantilever column systems reflect the type of moment frame detailing provided but with a limit on structural height, h_n , of 35 ft (10.7 m).

The value of R for cantilever column systems is derived from moment-resisting frame values where R is divided by Ω_0 but is not taken as less than 1 or greater than 2 1/2. This range accounts for the lack of sequential yielding in such systems. C_d is taken as equal to R, recognizing that damping is quite low in these systems and inelastic displacement of these systems is not less

Bearing Check:		
Check 8x8		
fc=P/A		
P	=G21	lb
A	=G23*G24	in2
fc	=B26/B27	psi
Fc (axially loaded)	='Middle Column Calcs'!B13	psi
CD	1.15	
CM	1	
Ct	1	
CF	1	
Ci	1	
CP	=G37-((G38-G39)^(1/2))	

F'c =B30*B31*B32*B33*B34*B35*B36 psi

fc/F'c (%) =(B28/B38)*100 =IF(B40>16.5, "NO GOOD", "OK") 12.2.5.2 Cantilever Column Systems. Cantilever column systems are permitted as indicated in Table 12.2-1 and as follows. The required axial strength of individual cantilever column elements, considering only the load combinations that include seismic load effects, shall not exceed 15% of the available axial strength, including slenderness effects.

Foundation and other elements used to provide overturning resistance at the base of cantilever column elements shall be designed to resist the seismic load effects, including overstrength of Section 12.4.3.

D+0.525Ev+0.525Eh+0.75S	44.0	08 psf				
Joists	=(G18*1*19)/2	lb	SW	34.73 lb	plf on beam	=(G19+J19)/1
Beams	=(((M19*9)+J20)/2)	lb	SW	='Middle Column Ib		
Total load	=G20*2	lb				
b	7	.5				
d	7	.5				
CP:						
FCE	=(0.822*G31)/((G32/G33)^2)					
F*c	=B30*B31*B32*B33*B34*B35	psi				
с	0.9					
E'min	=0.85*(10^6)	psi				
le	=G34*G35	in				
d	=G24	in				
Ke	2.4					
I	=10*12	in				
1ot torm	=(1+(C28(C20)))(2*C20)					

1st term =(1+(G28/G29))/(2*G30) 2nd term =((1+(G28/G29))/(2*G30))^2 3rd term =(G28/G29)/G30

F-8 Middle Column ASCE Check Results

In a cantilevered column system, stability of mass at the top is provided by one or more columns with base fixity acting as a single-degree-of-freedom system.

Cantilever column systems are essentially a special class of moment-resisting frame, except that they do not possess the redundancy and overstrength that most moment-resisting frames derive from sequential formation of yield or plastic hinges. Where a typical moment-resisting frame must form multiple plastic hinges in members to develop a yield mechanism, a cantilever column system develops hinges only at the base of the columns to form a mechanism. As a result, their overstrength is limited to that provided by material overstrength and by design conservatism.

It is permitted to construct cantilever column structures using any of the systems that can be used to develop moment frames, including ordinary and special steel; ordinary, intermediate, and special concrete; and timber frames. The system limitations for cantilever column systems reflect the type of moment frame detailing provided but with a limit on structural height, h_n , of 35 ft (10.7 m).

The value of R for cantilever column systems is derived from moment-resisting frame values where R is divided by Ω_0 but is 12.2.5.2 Cantilever Column Systems. Cantilever column systems are permitted as indicated in Table 12.2-1 and as follows. The required axial strength of individual cantilever column elements, considering only the load combinations that include seismic load effects, shall not exceed 15% of the available axial strength, including slenderness effects.

Foundation and other elements used to provide overturning resistance at the base of cantilever column elements shall be designed to resist the seismic load effects, including overstrength of Section 12.4.3.

not taken as less than 1 of	or greater than 2	1/2. This range ac	counts	D+0.525Ev+0.525Eh	+0.75S	44.0	8 psf				
for the lack of sequentia	l yielding in suc	th systems. C_d is ta	ken as	Joists		418.7	'6 lb	SW	34.73 lb	plf on beam	453.49
equal to R, recognizin	g that damping	g is quite low in	these	Beams		2070.44328	1 lb	SW	59.4765625 lb		
systems and inelastic d	isplacement of	these systems is n	ot less	Total load		4140.88656	i3 Ib				
Bearing Check:				b		7.	.5				
Check 8x8				d		7.	.5				
fc=P/A											
Р	4140.886563	lb									
А	56.25	in2		CP:							
fc	73.61576111	psi		FCE		473.836263					
				F*c		805	psi				
Fc (axially loaded)	700	psi		С		0.9					
CD	1.15			E'min		850000	psi				
CM	1			le		288	in				
Ct	1			d		7.5	in				
CF	1			Ke		2.4					
Ci	1			I		120	in				
CP	0.5291										
					1st term	0.882564708	8				
F'c	425.9655195	psi		2	2nd term	0.778920465	2				
				:	3rd term	0.654018306	4				
fc/F'c (%)	17.28209391	NO GOOD									

Appendix G- Connections

G-1 Joist to Beam Connection Calculations

Total down load	=576.234	lb	< 2x12
Total uplift	=B11	lb	< 2x12
			•

Total down load	=((156.8*19)/2)+7	lb	< (3) 2x12
Total uplift	=B17	lb	< (3) 2x12

2x12:

Uplift	12.6	psf
Joist trib	1	ft
Joist length	19	ft
Uplift	=(B8*B9*B10)/2	lb

(3) 2x12:

Uplift	12.6	psf
Joist trib	2.75	ft
Joist length	19	ft
Uplift	=(B14*B15*B16)/2	lb

HU212 allowable down snow load =1680*F11
--

HU212 allowable uplift =1135*F12 lb

HU212-3 allowable down snow load =2685*F11 lb

HU212-3 allowable uplift =1135*F12 Ib

lb

=if(F1>B1, "OK", "NO GOOD") =if(F2>B2, "OK", "NO GOOD")

=if(F4>B4, "OK", "NO GOOD") =if(F5>B5, "OK", "NO GOOD")

Use: HU212 modified for slope down for single 2x12 joists						
Use: HU212-3 modified for slope down for (3) 2x12 joists						
reduction factor for down load	0.65					
redcuction factor for uplift	0.65					

U/HU/HUC Series Modifications and Associated Load Reduction Factors

Seat			Flange	Fastener Substitutions			
Seat Sloped Up or Down 45° Max.	$\begin{array}{l} \mbox{Seat Skewed} \\ 671 \mbox{$^{\circ}$ Max.$}^3 \mbox{ for } W \leq 6 \\ 45^{\circ} \mbox{ Max. for } W \geq 6 \end{array}$	Seat Sloped and Skewed	One or Both HU Flanges Concealed ²	U 16d Stainless-Steel Other Fast Ied ² Nails Substituti		Other Fastener Substitutions	
1.00	W ≤ 3%6 use 1.00 W > 3%6 use 0.80	0.80	1.00 (normal) 0.80 (when sloped and skewed)	Ring shank (all conditions) Smooth shank (normal seat) Smooth shank (modified seat ¹)	1.00 1.00 0.50	$16d \rightarrow 16d \times 2\frac{1}{2}"$ $16d \rightarrow 10d$ $16d \rightarrow 10d \times 1\frac{1}{2}"$	1.00 0.84 0.64

1. Modified seat is sloped, skewed or both. If sloped only or skewed only, use a smooth shank stainless steel reduction of 0.65.

2. For both flanges concealed, W must be at least 25/16". To order ask for HUCXXX.

For skewed HUC, only flange on acute side is concealed.

3. Skews over 50° require a square-cut joist.

G-2 Joist to Beam Connection Results

-				
	Total down load	576.234	lb	< 2x12
	Total uplift	119.7	lb	< 2x12
	Total down load	1496.6	lb	< (3) 2x12
Γ	Total uplift	329.175	lb	< (3) 2x12
	2x12:			
	Uplift	12.6	psf	
	Joist trib	1	ft	
	Joist length	19	ft	
	Uplift	119.7	lb	
	(3) 2x12:			
	Uplift	12.6	psf	U/ł
	Joist trib	2.75	ft	
	Joist length	19	ft	Se
	Uplift	329.175	lb	D

HU212 allowable down snow load	1092	lb	OK
HU212 allowable uplift	737.75	lb	OK
HU212-3 allowable down snow load	1745.25	lb	OK
HU212-3 allowable uplift	737.75	lb	OK

Use: HU212 modified for slope down for single 2x12 joists Use: HU212-3 modified for slope down for (3) 2x12 joists				
reduction factor for down load	0.65			
redcuction factor for uplift	0.65			

U/HU/HUC Series Modifications and Associated Load Reduction Factors

Seat			Flange	Fastener	Substit	utions	
$\begin{array}{c} \mbox{Seat Sloped Up or} \\ \mbox{Down 45^{\circ} Max.} \end{array} \begin{array}{c} \mbox{Seat Skewed} \\ \mbox{67}\%^2 \mbox{Max.}^3 \mbox{for } W \leq 6 \\ \mbox{45^{\circ} Max. for } W \geq 6 \end{array}$		Seat Sloped and Skewed	One or Both HU Flanges Concealed ²	² 16d Stainless-Steel Other F Nails Substi		Other Fastene Substitutions	er S
1.00	W ≤ 3%6 use 1.00 W > 3%6 use 0.80	0.80	1.00 (normal) 0.80 (when sloped and skewed)	Ring shank (all conditions) Smooth shank (normal seat) Smooth shank (modified seat [*])	1.00 1.00 0.50	$16d \rightarrow 16d \times 2\frac{1}{2}"$ $16d \rightarrow 10d$ $16d \rightarrow 10d \times 1\frac{1}{2}"$	1.00 0.84 0.64

1. Modified seat is sloped, skewed or both. If sloped only or skewed only, use a smooth shank stainless steel reduction of 0.65.

2. For both flanges concealed, W must be at least 25/16". To order ask for HUCXXX.

For skewed HUC, only flange on acute side is concealed.

3. Skews over 50° require a square-cut joist.

G-3 Beam to Column Connection Calculations

Total down load	=7225.42/2	lb	end columns	LCE4 allowable uplift	1905	lb	=if(F1>B2, "OK",
Total uplift	=B16	lb	end columns	LCE4 allowable lateral	1425	lb	=if(F2>B3, "OK",
Lateral	=B11	lb	end columns				
Total down load	7225.42	lb	middle columns	1616HT allowable uplift	2585	lb	=if(F5>B2, "OK",
Total uplift	=B16*2	lb	middle columns	1616HT allowable F1	815	lb	=if(F6>B3, "OK",
Lateral	=B11*2	lb	middle columns				

Use: 1616HT for center columns each side	e
Use: LCE4 for end columns each side	

Wind load Lateral	51 =51*8*1	psf Ib
Uplift	7.2	psf
Trib	9	ft
Beam length	8	ft

Uplift for 1 beam end =(B13*B14*B15), lb

G-4 Beam to Column Connection Results
Total down load	3612.71	lb	end columns	LCE4 allowable uplift	1905	lb	OK
Total uplift	259.2	lb	end columns	LCE4 allowable lateral	1425	lb	OK
Lateral	408	lb	end columns				
			_				
Total down load	7225.42	lb	middle columns	1616HT allowable uplift	2585	lb	OK
Total uplift	518.4	lb	middle columns	1616HT allowable F1	815	lb	OK
Lateral	816	lb	middle columns				
			_				

Use:	1616HT	for ce	nter	colun	nns	each	side
Use:	LCE4 fo	r end	colui	mns e	ach	side	

Wind load Lateral	51 408	psf Ib
Uplift	7.2	psf
Trib	9	ft
Beam length	8	ft
Uplift for 1 beam end	259.2	lb

G-5 Column to Footing Connection Calculations

Total down load	7418	lb
Total shear load	408	lb
Total uplift	='Beam to Column'!B6	lb
Total moment	4080	lb-ft

Concrete Allowables:			
MPB88Z allowable uplift	6,100	lb	=if(F2>B3, "OK", "NO GOOD")
MPB88Z allowable shear	4875	lb	=if(F3>B2, "OK", "NO GOOD")
MPB88Z allowable moment	4525	lb-ft	=if(F4>B4, "OK", "NO GOOD")
Wood Assembly Allowables:			
MPB88Z allowable down load	17585	lb	=if(F7>B1, "OK", "NO GOOD")
MPB88Z allowable moment	4525	lb-ft	=if(F8>B4, "OK", "NO GOOD")

Use: MPB88Z

<-- pg 103

LCB

G-6 Column to Footing Connection Results

Total down load	7418	lb
Total shear load	408	lb
Total uplift	518.4	lb
Total moment	4080	lb-ft

Concrete Allowables:

MPB88Z allowable uplift	6,100	lb	OK
MPB88Z allowable shear	4875	lb	OK
MPB88Z allowable moment	4525	lb-ft	OK
Wood Assembly Allowables:			
MPB88Z allowable down load	17585	lb	OK
MPB88Z allowable moment	4525	lb-ft	OK

Use: MPB88Z

<-- pg 103

Appendix H: Foundation Design

H-1 Bearing Design for Foundations Calculations

*We will specify 4000 psi cond	rete in drawings (per ACI 19.2.1.1)						
qu:					=		
C') < little to no fines or clay		total down load	/418 -/(P10A2)*pi())/	lb ft2	
Nc	57.75			area or roundation	=((B10 2) pi())/ =G3/G4	nsf	=if(G5 <b2< td=""></b2<>
Nq	41.44	L					(
Ngamma	45.41	L					
unit weight	122.5	estimate found online	7				
Df Diameter (B)	2	s ft 2 ft	< Can change				
Factor of Safety	3			2nd Check:			
·····				qu 1st term			
CASE 3	d>B			qu 2nd term qu 3rd term	=B8*B9*B6 =0.4*B8*B7	*В	=G14/4 =G15/4
q	=B8*B9	lbs/ft^2	Df*gamma	qu=	2225.09B+15229	9.2	
qu	=(1.3*B3*B5+B17*B6)+(0.3*B8*B10*B7)	lbs/ft^2		7418/B^2=	556.2725B+3807	7.3	
qallowable	=B19/B12	lbs/ft^2		B (II)	1.20		
q net	=B19-B17	lbs/ft^2					
q allowable (net)	=(B19-B17)/B12	lbs/ft^2					
Q	=B21*B10	LBS/FT	<- MAX ALLOWABLE LOAD				
Reinforcing:	0.01Ag <x<0.08ag< th=""><th>< temperature and shrinkage</th><th></th><th>1</th><th></th><th></th><th></th></x<0.08ag<>	< temperature and shrinkage		1			
	diameter (in)	=B10*12					
	Ag (in2)	=(pi()*(C31^2))/4					
	As,min (in2)	=C32*U.01					
	As, max (mz)	-0.08 C32					
	Bar Diameter (in)	0.75	< #6 bars				
	area of bar (in2)	=0.25*3.14*(C36^2)					
	Required bars	=ROUNDUP(C33/C37, 0.1)					
	Area of rebar (in2)	=C37*C38					
	min spacing (in)	1					
	cc (in)	2					
	#4 stirrup diameter (in)	0.5					
	bw min (in)	=(2*C41)+(2*C42)+(C38*C36)+((C38-1)*C40)+0.5	=if(C43 <c31, "no="" "ok",="" good")<="" td=""><td></td><td></td><td></td><td></td></c31,>				
Shear reinforcement:	0.75(f'c)^(1/2)(bw*s/fyt) greater of	=0.75*sqrt(4000)*((24*C49)/60000)					
	50(bw*s/fvt)	=50*((24*C49)/60000)					
	Min. reinforcement required (in2)) =max(C47,C45)					
	s (in)	=36/4	(d/4)				
	4(f'c)^(1/2)bwd	=4*SQRT(4000)*C31*(B9 [*] 12)					
Vs,req	Vu/Phi-Vc	=C53/0.75-C52					
Vc	2sqrt(4000)bwd	=2*4000^0.5*B9*B10					
Vu		=G3/2					

H-2 Bearing Design for Foundations Results

2 #4's stirups 0.4 in >0.21in^2

H-3 Sliding Check Calculations

Sliding Check:			
Lateral load	1700	lb	
В	='Bearing Capacity'!B10	ft	
Df	='Bearing Capacity'!B9	ft	
Lateral load	=B2/(B3*B4)	psf	
Lateral resistance	350	pcf	
Lateral resistance	=B7*B3	psf	=IF(B5 <b8, "no="" "ok",="" good")<="" td=""></b8,>

H-4 Sliding Check Results

Sliding Check:			
Lateral load	1700	lb	
В	3	ft	
Df	2.5	ft	
Lateral load	226.67	psf	
Lateral resistance	350	pcf	
Lateral resistance	1050	psf	OK

H-5 Uplift Check Calculations

Liplift Chack:								
Weight of concrete	=G17	lb						
Weight of soil	=G25	lb				unit weight of concrete	150	lb/ft3
Weight resisting uplift	=B2+B3	lb				Simpson:		
						L	1.67	ft
Uplift from column	518.4	lb	=if(B4>B6, "C)), "NO G	OOD")	W	1.67	ft
						D	2	ft
						Volume of concrete	=G5*G6*G7	ft3
		1 67'						
		1.07				Ours:		
			6"			L	3	ft
		-				W	3	ft
						D	1	ft
						Volume of concrete	=G11*G12*G13	ft3
			1.5'					
						Total volume of concrete	=G8+G14	ft3
					25'	Weight of concrete	=G3*G16	lb
					2.0			
						unti weight of soil	='Bearing Capacity'!B8	lb/ft3
						3x3 area	=G11*G12	ft2
				1,		1.67x1.67 area	=G5*G6	ft2
				1		area of soil	=G20-G21	ft2
						height of soil	1.5	ft2
		0'				volume of soil	=G22*G23	ft3
		3				weight of soil	=G19*G24	lb

H-6 Uplift Check Results

Uplift Check:								
Weight of concrete	2186.67	lb						
Weight of soil	1141.289625	lb				unit weight of concrete	150	lb/ft3
Weight resisting uplift	3327.959625	lb				Simpson:		
						L	1.67	ft
Uplift from column	518.4	lb	C	ОК		W	1.67	ft
						D	2	ft
						Volume of concrete	5.5778	ft3
		1 67'						
		1.07				Ours:		
			6"			L	3	ft
						W	3	ft
						D	1	ft
						Volume of concrete	9	ft3
			1.	5'				
						Total volume of concrete	14.5778	ft3
					2.5'	Weight of concrete	2186.67	lb
					2.0			
						unti weight of soil	122.5	lb/ft3
	_					3x3 area	9	ft2
	_			1,		1.67x1.67 area	2.7889	ft2
	_					area of soil	6.2111	ft2
					 	height of soil	1.5	ft2
		2'				volume of soil	9.31665	ft3
		3				weight of soil	1141.289625	lb

Appendix I - Schedules

I-1 Original Schedule

ID	Task Name	Duration	Start	g 16, '20	Aug 23, '20	Aug 30, '20	Sep 6, '20	Sep 13,	20	Sep 20, '20	Sep 27, '20	Oct 4, '20	Oct 11, '20	Oct	18, '20	Oct 25, '20
1	Task 1: Analyze Existing Site	7 days	Tue Aug 18	M T W T F :	<u>s s m t w t F</u> 8/24	S S M T W T F	S S M T W	TFSSM	<u>T W T F S :</u>	S M T W T F	<u>S S M T W T F </u>	S S M T W T F	S S M T W	<u> T F S S </u>	<u>M T W T F</u>	S S M T
2	1.1: Pre-Site Visit Research	1 day	Tue Aug 18													
3	1.2: Site Visit	, 1 day	Tue Aug 18													
4	1.3: Survey	2 days	Sat Aug 22													
5	1.4: Topographic Map	1 day	Sun Aug 23													
6	1.5: Hydraulic Drainage Analys	is 1 day	Sun Aug 23													
7	Task 2: Geotechnical Analysis	12 days	Mon Aug 24	-	·		9,	/8								
8	2.1: Soil Collection	, 1 day	Mon Aug 24													
9	2.2: Lab Testing	, 10 days	Tue Aug 25		•											
10	2.3: Soil Classification	, 1 day	Tue Sep 8													
11	Task 3: Structural Analysis	22 days	Wed Sep 9										0/8			
12	3.1: Examination of Existing St	ructures 1 dav	Wed Sep 9					~								
13	3.2: Develop Alternatives	2 days	Thu Sep 10				G.									
14	3.3: Ramada Geometry	1 day	Mon Sep 14						~							
15	3.4: Proposed Design Analysis	19 days	Mon Sep 14						<u> </u>				0/8			
16	3 4 1. Design Loads	2 days	Mon Sep 14						–							
17	3.4.2: Decking	2 days	Wed Sep 16													
18	3.4.3: Trusses/loists	2 days	Fri Sen 18	-												
10	3.4.5. Trusses/Joists	2 days	Tuo Son 22	-												
20	3.4.4. Dedilis	2 days	Thu Son 24	-												
20	2.4.5. COIUIIIIIS	2 days	Mon Ser 22	-						7						
21	3.4.0. FOUNDATIONS	2 days	Wod Ser 20	-												
22	3.4.7: Connections	2 days	vvea Sep 30	-												
23	3.4.8: Lateral Analysis	2 days	Fri Oct 2	-							*					
24	3.4.9: Decision Matrix	2 days	Mon Oct 12	-										10/1		
25	Task 4: Material Specifications	3 days	Wed Oct 14												0	
26	Task 5: Site Design	10 days	Mon Oct 19	_												
27	5.1: Plan Set	8 days	Wed Oct 21													
28	5.2: Cost Estimate	2 days	Thu Oct 29	-												
29	Task 6: Project Management	72 days	Tue Aug 18													
30	6.1: Project Impacts	1 day	Mon Nov 2	_												
31	6.1.1: Environmental Impac	ts 1 day	Mon Nov 2													
32	6.1.2: Economic Impacts	1 day	Mon Nov 2													
33	6.1.3: Social Impacts	1 day	Mon Nov 2													
34	6.2: Project Devilerables	55 days	Tue Sep 8													
35	6.2.1: 30% Submittal	20 days	Tue Aug 18	II				9/10								
36	6.2.1.1: 30% Report	18 days	Tue Aug 18													
37	6.2.1.2: 30% Presentation	n 5 days	Fri Sep 4					-								
38	6.2.1.3: 30% Plan Set	15 days	Fri Aug 21													
39	6.2.2: 60% Submittal	22 days	Wed Sep 9				-	_		_		1	0/8			
40	6.2.2.1: 60% Report	20 days	Wed Sep 9													
41	6.2.2.2: 60% Presentation	n 5 days	Fri Oct 2													
42	6.2.2.3: 60% Plan Set	20 days	Wed Sep 9													
43	6.2.3: 90% Submittal	21 days	Tue Oct 13	1								L				
44	6.2.3.1: 90% Report	18 days	Tue Oct 13													
45	6.2.3.2: Practice Presenta	ition 5 days	Fri Oct 30	1												
46	6.2.3.3: 90% Plan Set	18 days	Tue Oct 13	1												
47	6.2.3.4: 90% Website	10 days	Wed Oct 28	1												
48	6.2.4: Final Submittal	9 davs	Wed Nov 11	1												
49	6.2.4.1: Final Report	9 davs	Wed Nov 11	1												
50	6.2.4.2: Final Presentation	n 3 davs	Wed Nov 11	1												
51	6.2.4.3: Final Plan Set	9 days	Wed Nov 11	1												
52	6.2.4 4 [.] Final Website	5 days	Tue Nov 17	1												
53	6 3: Meetings	72 days		-												
54	6 3 1. Technical Advisor Ma	etings 31 days	Tue Son Q	-												
50	6.2.2: Grading Instructor M	antings 50 dave		_		_	·			- L					_	
70	6.2.2. Client Meetings	a days	Mon Aug 20	-												
72	6.3.4. Teors Martines		Tue Ave 42	[_					_	_	_		_	_
13	6.3.4: Learn Weetings	bo days	Tue Aug 18		_				-						_	
88	6.4: Resource Management	72 days	Tue Aug 18													
Proied		_	S	ummary	·	Inactive Milestone		Duration-only		Start-only	E	External Milestone	\diamond	Critical !	Split	
Date:	Tue Aug 18		Р	roject Summary	10	Inactive Summary	1	Manual Summary Ro	ollup	Finish-only	з	Deadline	÷	Progres	S	
	Milesto	ne 🔶	Ir	nactive Task		Manual Task		Manual Summary	1	External Tasks		Critical		Manual	Progress	
										Pa	no 1					

I-2 Final Schedule

ID	Task Name		Duration	Start	Finish	Aug 16	, '20 T W T T C	Aug 23, '20	Aug 30, '20	Sep 6, '20	Sep 13, '20	Sep 20,	,'20 S	ep 27, '20	Oct 4, '20	Oct 11, '20	Oct 1	8, '20 Oc
1	Task 1: Analyze Existing	Site	9 days	Tue Aug 18	Wed Aug 26	SM	I W I F S	<u>8/26</u>	5 5 M I W	I F S S M I '	W I F S S M I W	IFSSM	<u> W F 5 5</u>	5 M I W I F	SSMIWIF	5 5 M I W	<u> </u>	1 W I F S S
2	1.1: Pre-Site Visit Rese	arch	1 day	Tue Aug 18	Tue Aug 18													
3	1.2: Site Visit		1 day	Tue Aug 18	Tue Aug 18	- G												
4	1.3: Survey		1 day	Sat Aug 22	Sat Aug 22			ь										
5	1.4: Topographic Map		2 days	Tue Aug 25	Wed Aug 26													
6	1.5: Hydraulic Drainag	e Analysis	1 day	Sun Aug 23	Mon Aug 24													
7	Task 2: Geotechnical An	alysis	12 days	Mon Aug 24	Tue Sep 8				_		9/8							
8	2.1: Soil Collection		1 day	Mon Aug 24	Mon Aug 24													
9	2.2: Lab Testing		10 days	Tue Aug 25	Mon Sep 7													
10	2.3: Soil Classification		1 day	Tue Sep 8	Tue Sep 8													
11	Task 3: Structural Analys	sis	22 days	Wed Sep 9	Thu Oct 8							_				0/8		
12	3.1: Examination of Ex	isting Structures	1 day	Wed Sep 9	Wed Sep 9					•	-							
13	3.2: Develop Alternati	ves	2 days	Thu Sep 10	Fri Sep 11						• · · · · · · · · · · · · · · · · · · ·							
14	3.3: Ramada Geometr	у	1 day	Mon Sep 14	Mon Sep 14													
15	3.4: Proposed Design	Analysis	19 days	Mon Sep 14	Thu Oct 8				_					_		0/8		
16	3.4.1: Design Loads		2 days	Mon Sep 14	Tue Sep 15						• •••• •							
17	3.4.2: Decking		2 days	Wed Sep 16	Thu Sep 17						F	-						
18	3.4.3: Trusses/Joists	5	2 days	Fri Sep 18	Mon Sep 21						(F State	r					
19	3.4.4: Beams		2 days	Tue Sep 22	Wed Sep 23							9						
20	3.4.5: Columns		2 days	Thu Sep 24	Fri Sep 25													
21	3.4.6: Foundations		2 days	Mon Sep 28	Tue Sep 29								4					
22	3.4.7: Connections		2 days	Wed Sep 30	Thu Oct 1													
23	3.4.8: Lateral Analy	sis	2 days	Fri Oct 2	Mon Oct 5													
24	3.4.9: Decision Mat	rix	2 days	Mon Oct 12	Tue Oct 13													
25	Task 4: Material Specific	ations	3 days	Wed Oct 14	Fri Oct 16										-		10/16	5
26	Task 5: Site Design		10 days	Mon Oct 19	Fri Oct 30									_	L			
27	5.1: Plan Set		8 days	Wed Oct 21	Fri Oct 30													
28	5.2: Cost Estimate		2 days	Thu Oct 29	Fri Oct 30													
29	Task 6: Project Manager	nent	72 days	Tue Aug 18	Mon Nov 23	•												
30	6.1: Project Impacts		1 day	Mon Nov 2	Mon Nov 2													
31	6.1.1: Environmenta	al Impacts	1 day	Mon Nov 2	Mon Nov 2													
32	6.1.2: Economic Imp	pacts	1 day	Mon Nov 2	Mon Nov 2													
33	6.1.3: Social Impact	s	1 day	Mon Nov 2	Mon Nov 2													
34	6.2: Project Devilerab	les	55 days	Tue Sep 8	Mon Nov 23	•												
35	6.2.1: 30% Submitt	al	20 days	Tue Aug 18	Thu Sep 10	-					9/10							
36	6.2.1.1: 30% Rep	ort	18 days	Tue Aug 18	Tue Sep 8	_												
37	6.2.1.2: 30% Pres	entation	5 days	Fri Sep 4	Thu Sep 10					t.								
38	6.2.1.3: 30% Plan	Set	15 days	Fri Aug 21	Tue Sep 8		1									0.00		
39	6.2.2: 60% Submitt	al	22 days	Wed Sep 9	Thu Oct 8											0/8		
40	6.2.2.1: 60% Rep	ort	20 days	wed Sep 9	The Oct 6	-												
41	6.2.2.2: 60% Pres	entation	5 days	Fri Oct 2	The Ord C	-												
42	6.2.2.3: 60% Plan	Set	20 days	Wed Sep 9	Tue Oct 6										3			
43	6.2.3: 90% Submitt	aı		Tue Oct 13	Thu Nov 5	-												
44 1	6.2.2.1. 90% Kep	Drecentation	To nake	Fri Oct 20	Thu Nov 5	-										4		
45	6.2.3.2. Practice	Sot	5 uays	Tuo Oct 12	Thu Nov 5	_												
40	6.2.3.5.90% Plan	Set	10 days	Wod Oct 28	Tuo Nov 10	-											_	
47	6 2 4: Final Submitt			Wed Nov 11	Mon Nov 23													
40	6.2.4.1: Final Bon	art	o days	Wed Nov 11	Mon Nov 23	-												
50	6.2.4.1. Final Rep	contation	9 uays	Wed Nov 11	Fri Nov 12													
50	SU 6.2.4.2: Final Presentation 51 6.2.4.3: Final Plan Set		o dave	Wed Ney 11	Mon New 22	-												
51	6.2.4.5: Final Plan	n set	5 days	Tue New 17	Mon New 22	-												
52	0.2.4.4: FINAI We	USILE	Judys		Mon New 23													
22	6 A: Resource Manage	ment	72 days		Mon Nov 23	-												
00	o.a. Resource Manage		12 udys	Tue Aug 18	10101111007 23													
Proje	ect: UPDATED SCHEDULE	Task		5	Summary	-		Inactive Milestor	ne 🔶	Dura	tion-only	5	Start-only	E	External Mile	tone 🔶 –		Critical Split
Date:	: Thu Nov 5	Split	·····	F	Project Summary			I Inactive Summa	y I	Man	ual Summary Rollup		-inish-only	1	Deadline	+		Progress Manual Progress
		winestone	*		nactive Task			widfludi 185K	U.	IVIAN					Cnucal			wanual Progress
1												Page	1					

